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Auction Design
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How to set the price?
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Overview

. Distribution-optimal prophet inequalities

> Unified proof for both max and min |.1.D prophet inequality
> Competition complexity

. Oracle-augmented prophet inequalities

» Connection with top-1-of-k model
> Upper-lower bounds for I.I.D. case
> Upper-lower bounds for general case (adversarial order)
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Overview

1. Distribution-optimal prophet inequalities

> Unified proof for both max and min I.1.D prophet inequality
> Competition complexity
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Optimal Stopping: The Prophet Inequality

X1,Xo,...,X, ~ (known) D1, Do, ... ,.Z)n
arrive in adversarial order.

» Design stopping time to maximize selected value.
» Compare against all-knowing prophet: E[max; X;].
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U[13,14]

U[7,16]

U0, 20]

1000 w.p. ﬁ
0 otherwise

X1 =13.74

Xy =15.66

X3 =16.67




U3, 4] U[7,16]  UJ0, 20

{

1000 w.p. ﬁ

0 otherwise

X, =13.74 Xy =15.66 X3 =16.67

E[max {Xl,Xz,X3,X4}] ~ 24.66
E[OPTALG {X1, X2, X3, Xa}] = 13.37

Optimal strategy was to select X.

X4=0
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Prophet Inequality
1 stopping strategy that achieves 1/2 - E[max; X;],
and this is tight.

wW.p. &

/e
Xi=1 wp. 1, and X; = /
0 wp.l-¢

E[ALG] = 1 for all algorithms.
E[max {X;,Xol=1-e+1-(1-g)=2-=¢.

E[ALG] . . .
Smaxx]: Competitive Ratio
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> |dea: Set threshold T, accept first X; > T.
T = price in auction.
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Two proofs in one?? "

Forany T,

E[ALG] > Pr[max X; > T1 T + )  Pr{We reach i] E[max {X; - T,0}]
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E[ALG] > Pr[max X; > T1 T + )  Pr{We reach i] E[max {X; - T,0}]

ZX[—T
i
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\ ’

Two proofs in one?? "

Forany T,

E[ALG] = Pr[max X; > T] T + Z Pr[We reach i] E[max {X; — T, 0}]

in—T
i

> Pr[max X; > T]T + Pr[max X; < T] E

>Pr[max X; > T] T + (1 — Prlmax X; > T]) (E
1 L

> : Set T such that Prmax; X; > T'] = /2.

11 X
E[ALG] > - T + (E [max Xi] - T) - —E[mazx 1
1

max X,] - T) .
l
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Two proofs in one?? "

Forany T,
E[ALG] > Pr[max X; > T1 T + )  Pr{We reach i] E[max {X; - T,0}]

in—T
i

> Pr[max X; > T] T + (1 — Pr[max X; > T]) (]E [max X,-] - T).
1 1 4

> Pr[max X; > T]T +Pr[max X; <T] E
1 l

> : Set T such that Pr[max; X; > T] = 1/2.
1 1 X
BALG] > ~ T + ~ (E [maxX,] - T) _ Blmax; Xi] |
2 2 i 2
> :SetT = % - E[max; X;].
E[max,- X,']

E[ALG] > Pr[max X; > T] B — + (1 — Pr[max X; > T])-
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Two proofs in one?? "

Forany T,

E[ALG] > Pr[max X; > T] T + Z Pr[We reach i] E[max {X; — T, 0}]

>Pr[maxX; > T]T + Prlmax X; <T] E
1 L

in—T
i

max X,] - T) .
1

> Prlmax X; > T]T + (1 — Pr[max X; > T]) (]E
1 1

> : Set T such that Pr[max; X; > T] = 1/2.
! ! i Xi
BIALG)> 3 T+ 5 (E|maxXi| - T) = Elmax; Xi]
2 2 i )
> : Set T = 1 - E[max; X;].
.;X:. ] )(.
E[ALG] > Pr[max X; > T] % " (1 ~ Primax X; > T]) E[male il
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Two proofs in one?? “**

)

Forany T,

E[ALG] > Pr[max X; > T1 T + )  Pr{We reach i] E[max {X; - T,0}]

> Pr[max X; > T]T +Pr[max X; <T] E
1 l

ZX[—T
i

> Prlmax X; > T]T + (1 — Prfmax X; > T']) (E [max Xi] - T)
1 i §
> : Set T such that Prlmax; X; > T] = 1/2.
1 1 - X
E[ALG] > = T + 5 (E [maxX,] - T) _ Elmax; Xi
27 2 ¢ 5
>

:SetT = % - E[max; X;].

. )(4 . )(4

E[ALG] > Prlmax X; > T % + (1 _ Pr[max X; > T]) %
_ E[maxi X,']

2
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Procurement =— Minimization
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Procurement =— Minimization

What if objective is min; X;? Same problem?
> Objective: Minimize selected value, compare against
E[min,- X,'].
Forced to select an element.
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> No bound on competitive ratio for general (non-1.1.D.)
distributions.

» What about II.D.? (D) =Dy =--- =D, =D)
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Procurement =— Minimization

What if objective is min; X;? Same problem?
> Objective: Minimize selected value, compare against
E[min,- X,'].
Forced to select an element.

> No bound on competitive ratio for general (non-1.1.D.)
distributions.

» What about II.D.? (D) =Dy =--- =D, =D)

No hope for universal bound:

D : F(x) =1—1/x, with x € [1, +00) (Equal-revenue distribution).
E[X] =1+ [ (1 - F(x))dx = +co, but

E[min{X;, Xo}] = 1 + [ (1 = F(x))* dx < +co.
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[.I.D. Prophet Inequality
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[.I.D. Prophet Inequality

[.I.D. Prophet Inequality

For any D, 3 threshold stopping strategy 71, 13,..., T, that achieves
B - E[max; X;], where § ~ 0.745, and this is tight.
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[.I.D. Prophet Inequality

[.I.D. Prophet Inequality
For any D, 3 threshold stopping strategy 71, 13,..., T, that achieves

B - E[max; X;], where § ~ 0.745, and this is tight.

For any D, 1 a single threshold T such that selecting the first X; >
achieves (1 —1/¢) - E[max; X;] = 0.632 - E[max; X;].
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[.I.D. Prophet Inequality

[.I.D. Prophet Inequality

For any D, A threshold stopping strategy 71,12, ..., 7, that achieves
B - E[max; X;], where 8 ~ 0.745, and this is tight.

For any D, 3 a single threshold T such that selecting the first X; >
achieves (1 — l/e) - E[max; X;] ~ 0.632 - E[max; X;].

» Minimization?
Intuition:
Set T = ¢ - E[min; X;].
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[.I.D. Prophet Inequality

[.I.D. Prophet Inequality

For any D, A threshold stopping strategy 71,12, ..., 7, that achieves
B - E[max; X;], where 8 ~ 0.745, and this is tight.

For any D, 3 a single threshold T such that selecting the first X; >
achieves (1 — l/e) - E[max; X;] ~ 0.632 - E[max; X;].

» Minimization?

{ntuition False Intuition:
Doesn’t work! Pr[We are forced to select X,,] > c.
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Towards a Unified Analysis
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Towards a Unified Analysis

Optimal policy: Set 7; = E[OPTALG;,
How to analyze it?

»]), accept first X; < 7;.

.....
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Towards a Unified Analysis

Optimal policy: Set 1; = E[OPTALG;, .. ,], accept first X; < 7;.

How to analyze it?

.....

Worst-case instance for Max: n —» co = Fix O and take n — oo.

Asymptotic Competitive Ratio (ACR)
. E[ALG(n)]
Amin = lim ——————.
n—00 ]E[mm:’:l X1
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Optimal policy: Set 1; = E[OPTALG;, .. ,], accept first X; < 7;.
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.....

Worst-case instance for Max: n —» co = Fix O and take n — oo.

Asymptotic Competitive Ratio (ACR)
E[ALG(n)] _ .. E[ALG(n)]
n—co B[max’_, X;]

Ain = lim Amax =

n—eo E[min’_, X;]’
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Towards a Unified Analysis

Optimal policy: Set 7; = E[OPTALG;,
How to analyze it?

»]), accept first X; < 7;.

.....

Worst-case instance for Max: n —» co = Fix O and take n — oo.

Asymptotic Competitive Ratio (ACR)
E[ALG(n)] . E[ALG(n)]

Amin = lim Amax = R a———
min max = o E[max?ZI Xil

n—co ]E[minf’zl X1 '
> M, = max{Xi,...,X,}
> m, = min{Xy,...,X,}
» Distribution of M,,, m, as n — c0?

> lim, 0 M, = +oo, lim,_m, =0 = Re-scaling
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Technique: Extreme Value Theory

Extreme Value Theorem
Assume there exist sequences a, > 0, b, € R such that

lim Fy,(apx +b,) = G;(x).
n—oo

Then,
exp (—(1 + yx)_l/y), ify+0

Gy = {exp (—exp(—x)), ify=0
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Technique: Extreme Value Theory

Extreme Value Theorem
Assume there exist sequences a, > 0, b, € R such that

lim Fyy, (a,x + by) = G ().
n—00

Then,
exp (=1 +yx)™7), ify+0
G () = p(-(1+yx)7") =0
exp(—exp(-x), ify=0
> G : Extreme Value Distribution, v : Extreme Value Index
> Three distinct G’s:
> v < 0: Reverse Weibull
> v =0: Gumbel
> vy > 0: Fréchet
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Technique: Extreme Value Theory

Extreme Value Theorem
Assume there exist sequences a, > 0, b, € R such that

lim Fy,(apx +b,) = G;(x).
n—oo

Then,
_ )
G = [y ).y 20
exp (—exp (—x)), ify=0
>
>

> Central Limit Theorem analogue for Max.
» Can get similar result for Min, but y changes.
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Technique: Extreme Value Theory

Extreme Value Theorem
Assume there exist sequences a, > 0, b, € R such that

lim Fy,(apx +b,) = G;(x).
n—oo

Then,
- AT
Gro < [P0 ). ity 20
exp (—exp (—x)), ify=0
>
|
»
>
> Conditions = D follows EVT.
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[ID Pl via Extreme Value Theory
= —1)!

Theorem =06 Dt
Assume there exist sequences a,, > 0, b, € R such that

lim Fy, (apx + by) = G;(x) lim Fy, (anx + by) = G, (x)

n—0oo n—oo

for some vy for some y

Then, the optimal DP achieves a competitive ratio, as n — oo, of

1=y

ra-y’

1. ACRyin = _
} Min maX{F(l _y)

1 — )
ACRMax:min{ d-y 1}.
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[ID Pl via Extreme Value Theory
= —1)!

Theorem & =0G- Dt
Assume there exist sequences a,, > 0, b, € R such that

lim Fy, (apx + by) = G;(x) lim Fy, (anx + by) = G, (x)

n—0oo n—oo

for some vy for some y

Then, the optimal DP achieves a competitive ratio, as n — oo, of

1=y

ra-y’

13. ACRyi, = _
} Min max{F(l—y)

1 — )
ACRMax:min{ d-y 1}.

» Distribution-optimal closed form!
> Unified analysis of competitive ratio for both Max and Min.
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[ID Pl via Extreme Value Theory

Theorem & =0G- Dt

Assume there exist sequences a,, > 0, b, € R such that

lim Fy, (apx + by) = G;(x) lim F,, (apx + by) = G;(x)
n—0oo n—oo
for some vy for some y

Then, the optimal DP achieves a competitive ratio, as n — oo, of

1=y

ra-y’

13. ACRyi, = _
} Min max{m—y)

1 — )
ACRMax:min{ d-y 1}.

» Distribution-optimal closed form!
> Unified analysis of competitive ratio for both Max and Min.
» DMHR = ACRpyuc=1 & ACRy, <2
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Asymptotic Competitive Ratio

For y — —oo, by Stirling’s approximation

Ad-»7_ -
ra-v
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Asymptotic Competitive Ratio

ACR(y)® ACR(7)°
Figure: ACR(y) for Max Figure: ACR(y) for Min

> “D follows EVT”: most general class we expect closed-form.
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High-Level Approach

F(t) = Prx-p[X <t], F“(p):inverse of F (“Quantile function”).

Using EVT and heavy-machinery from theory of regularly-varying
functions:

Max Min
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High-Level Approach

F(t) = Prx-p[X <t], F“(p):inverse of F (“Quantile function”).

Using EVT and heavy-machinery from theory of regularly-varying
functions:

Max Min

E[ALG(m)] ~ F© (1 - I_Ty) E[ALG(n)] ~ F*© (1;—7)
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High-Level Approach

F(t) = Prx-p[X <t], F“(p):inverse of F (“Quantile function”).

Using EVT and heavy-machinery from theory of regularly-varying
functions:

Max Min
1- 1=
E[ALG(n)] ~ F< (1 - Ty) E[ALG(n)] ~ F< (—7)
n
n - 1 n |1
E[maxX,] ~xI'(l-y) F (1 - —) E|lminX;|~I'(1 —y) F (—)
i=1 n i=1 n

T(x) = (x - 1)!
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High-Level Approach

F(t) = Pry.plX < 1],

F<(p) : inverse of F (“Quantile function”).

Using EVT and heavy-machinery from theory of regularly-varying

functions:
Max

E[ALG(n)] ~ F© (1 1

1
E [m’éxxi] ~T(1-y) F© (1 - —)
i=1 n

F‘_(l C)zc_y F&(l -

n

Y

|

n
E |min X;
i=1

C

n

|

]

n
T(x) = (x - 1)!

E[ALG(n)] = F© (

Min
-y

|

~T(1—y) F© (1)
n

)

1

n
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Competition Complexity
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Competition Complexity

What if we want E[ALG] > E[max; X;] or E[ALG] < E[min; X,]r)
— give ALG more random variables!
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Competition Complexity

What if we want E[ALG] > E[max; X;] or E[ALG] < E[min; Xl]r)
— give ALG more random variables!

Competition Complexity
For fixed n, the competition complexity of a distribution D is

inf {c

E[ALG(c n)] > E[r;falx X,-]} inf {c

E[ALG(cn)] < E[Hflln Xi]}

for Max for Min

> For Max and D = D(n), it can be unbounded.
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Asymptotic Competition Complexity via EVT

What if we fix O and take n — co?
(Asymptotic Competition Complexity - ACC)

Theorem
For every distribution following EVT,

ACCpax(y) = ACCuyin(y)
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Asymptotic Competition Complexity via EVT

What if we fix O and take n — co?
(Asymptotic Competition Complexity - ACC)

Theorem
For every distribution following EVT,

ACChar¥) = ACChin(y) = (ACR))
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Asymptotic Competition Complexity via EVT

What if we fix O and take n — co?
(Asymptotic Competition Complexity - ACC)

Theorem
For every distribution following EVT,

ACCyaxy) = ACCyin) = (ACR®)) " = (1 =9 (1 = y)'"".
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Asymptotic Com

ACC(v)

3

petition Complexity

T

> ACC < e for all D following EVT.
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Overview

>
>

| 4
2. Oracle-augmented prophet inequalities

» Connection with top-1-of-k model
> Upper-lower bounds for I.I.D. case
> Upper-lower bounds for general case (adversarial order)

3.
>
>
>
4.
>
>
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Oracle-Augmented Prophet Inequalities

» O model:
» Assume ALG has k calls to O, who knows Xj,...,X,.

> Stepi:
6 x> max’_,, , X; = ALG selects X;
® X <max_,, X; = ALG rejects X;
» “Algorithms with predictions”
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» Assume ALG has k calls to O, who knows Xj,...,X,.
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6 x> max’_,, , X; = ALG selects X;
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» “Algorithms with predictions”

> Top-1-of-k model:
> ALG selects S with |[S| < k, but only maxy.cs X; matters

62/76



v

v

v

v

v

v

Oracle-Augmented Prophet Inequalities

O model:
> Assume ALG has k calls to O, who knows X1, ..., X,.
Step i:
& X; > max;f:iﬂ X; = ALG selects X;
® X <max_,, X; = ALG rejects X;
“Algorithms with predictions”

=i+1

Top-1-of-k model:
> ALG selects S with |[S| < k, but only maxy.cs X; matters

CR: Maximize E[ALG)/E[max; X;]
PbM: Maximize Pr[ALG selects max; X;]
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Results for O, Model

Theorem
> PbM: O = Top-1-of-(k + 1)

CR: E][EIL‘:QG);[] PbM : Pr[ALG selects max; X;]
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Results for O, Model

Theorem
> PbM: O = Top-1-of-(k + 1)
> CR: E[ALG(Oy)] <E[OPTALG (Top-1-of-(k + 1))]

CR: E][EIL‘:QG);[] PbM : Pr[ALG selects max; X;]
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Results for O, Model

Theorem
> PbM: Oy = Top-1-of-(k + 1)
> CR: E[ALG(Oy)] <E[OPTALG (Top-1-of-(k + 1))]

> LID.: 1-0(k™)<PbM <1-0(k™)
> General (adversarial order) :
1 - O(e—k/S-m) <CR<1-0 (e"‘/l-““)

Single-threshold algorithms.

CR: E][EIL‘:&I_G);[] PbM : Pr[ALG selects max; X;]
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Results for O, Model

Theorem
> PbM: Oy = Top-1-of-(k + 1)
> CR: E[ALG(Oy)] <E[OPTALG (Top-1-of-(k + 1))]

> LLD.: 1-0(k™)<PbM <1-0(k*)
> General (adversarial order) :
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Single-threshold algorithms.

CR: Eﬁﬁfﬂ] PbM : Pr[ALG selects max; X;]
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Results for O, Model

Theorem
> PbM: O = Top-1-of-(k + 1)
> CR: E[ALG(Oy)] < E[OPTALG (Top-1-of-(k + 1))]

> LID.: 1-0(k™)<PbM <1-0(k™)
> General (adversarial order) :
1 - O(e*k/ilg) <CR<1- O(e_k/l‘44)

Single-threshold algorithms.
Improves upon 1 — O (e‘k/")

CR: Eﬁﬁfﬂ[] PbM : Pr[ALG selects max; X;]
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Future Directions

Principal wants to delegate a Pl instance to k agents.

Beyond the independence assumption.

Multiple selection minimization PI.

Free-Order Pl: ALG can choose order of realizations.
Can we get = 0.745 (1.1.D. constant)?
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¥ Thank You *
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Questions?
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