

Selling Bananas in an Uncertain Environment

Vasilis Livanos

University of Illinois Urbana-Champaign

November 29th, 2023

How to set the price?

Overview

1. Distribution-optimal prophet inequalities

[L., Mehta '22, L. '23]

- Unified proof for both max and min I.I.D prophet inequality
- Competition complexity

2. Oracle-augmented prophet inequalities

[Har-Peled, Harb, L. '23]

- Connection with top-1-of-k model
- Upper-lower bounds for I.I.D. case
- Upper-lower bounds for general case (adversarial order)

3. Optimal greedy OCRSs [L., '22]

- ▶ ¹/e-selectable greedy OCRS for single-item
- ► ¹/e hardness
- Extension to transversal matroids

4. Submodular prophet inequalities [Chekuri, L. '21]

- Small constant SPI via OCRS
- Generalized framework for several constraints
- Correlation gap

Overview

1. Distribution-optimal prophet inequalities

[L., Mehta '22, L. '23]

- Unified proof for both max and min I.I.D prophet inequality
- Competition complexity

2. Oracle-augmented prophet inequalities

[Har-Peled, Harb, L. '23]

- ► Connection with top-1-of-*k* model
- Upper-lower bounds for I.I.D. case
- Upper-lower bounds for general case (adversarial order)

3. Optimal greedy OCRSs [L., '22]

- ► ¹/e-selectable greedy OCRS for single-item
- ► ¹/e hardness
- Extension to transversal matroids

4. Submodular prophet inequalities [Chekuri, L. '21]

- Small constant SPI via OCRS
- Generalized framework for several constraints
- Correlation gap

Optimal Stopping: The Prophet Inequality

[Krengel, Sucheston, Garling '77]

 $X_1, X_2, \dots, X_n \sim \text{(known) } \mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_n$ arrive in *adversarial* order.

- ▶ Design *stopping time* to maximize selected value.
- ▶ Compare against all-knowing *prophet*: $\mathbb{E}[\max_i X_i]$.

$$\mathcal{U}[13,14]$$
 $\mathcal{U}[7,16]$ $\mathcal{U}[0,20]$

 $X_1 = 13.74$

$$\mathcal{U}[13, 14]$$

 $\mathcal{U}[13,14]$ $\left| \mathcal{U}[7,16] \right| \left| \mathcal{U}[0,20] \right|$

$$\mathcal{U}[0,20]$$

$$X_1 = 13.74$$

 $X_2 = 15.66$

$$\mathcal{U}[13, 14]$$

 $\mathcal{U}[13,14] \Big| \ \Big| \mathcal{U}[7,16] \Big| \ \Big| \mathcal{U}[0,20] \Big|$

$$X_1 = 13.74$$

$$X_2 = 15.66$$

$$X_3 = 16.67$$

$$\mathcal{U}[13,14]$$

 $\mathcal{U}[7,16]$

$$\mathcal{U}[0,20]$$

$$\begin{cases} 1000 & \text{w.p. } \frac{1}{100} \\ 0 & \text{otherwise} \end{cases}$$

$$X_1 = 13.74$$

$$X_2 = 15.66$$

$$X_3 = 16.67$$

$$X_4 = 0$$

$$\mathbb{E}[\max\{X_1, X_2, X_3, X_4\}] \approx 24.66$$

$$\mathbb{E}[OPTALG\{X_1, X_2, X_3, X_4\}] \approx 13.37$$

Optimal strategy was to select X_1 .

 \exists stopping strategy that achieves $1/2 \cdot \mathbb{E}[\max_i X_i]$, and this is tight.

$$X_1 = 1$$
 w.p. 1, and $X_2 = \begin{cases} 1/\varepsilon & \text{w.p. } \varepsilon \\ 0 & \text{w.p. } 1 - \varepsilon \end{cases}$

 $\mathbb{E}[ALG] = 1$ for all algorithms.

$$\mathbb{E}[\max\{X_1, X_2\}] = \frac{1}{\varepsilon} \cdot \varepsilon + 1 \cdot (1 - \varepsilon) = 2 - \varepsilon.$$

 $ightharpoonup \frac{\mathbb{E}[ALG]}{\mathbb{E}[\max_i X_i]}$: Competitive Ratio

 \exists stopping strategy that achieves $1/2 \cdot \mathbb{E}[\max_i X_i]$, and this is tight.

$$X_1 = 1$$
 w.p. 1, and $X_2 = \begin{cases} 1/\varepsilon & \text{w.p. } \varepsilon \\ 0 & \text{w.p. } 1 - \varepsilon \end{cases}$

 $\mathbb{E}[ALG] = 1$ for all algorithms.

$$\mathbb{E}[\max\{X_1, X_2\}] = \frac{1}{\varepsilon} \cdot \varepsilon + 1 \cdot (1 - \varepsilon) = 2 - \varepsilon.$$

- $ightharpoonup \frac{\mathbb{E}[ALG]}{\mathbb{E}[\max_i X_i]}$: Competitive Ratio
- ▶ Idea: Set threshold T, accept first $X_i \ge T$. T = price in auction.

 \exists stopping strategy that achieves $1/2 \cdot \mathbb{E}[\max_i X_i]$, and this is tight.

$$X_1 = 1$$
 w.p. 1, and $X_2 = \begin{cases} 1/\varepsilon & \text{w.p. } \varepsilon \\ 0 & \text{w.p. } 1 - \varepsilon \end{cases}$

 $\mathbb{E}[ALG] = 1$ for all algorithms.

$$\mathbb{E}[\max\{X_1,X_2\}] = \frac{1}{\varepsilon} \cdot \varepsilon + 1 \cdot (1-\varepsilon) = 2 - \varepsilon.$$

- $ightharpoonup \frac{\mathbb{E}[ALG]}{\mathbb{E}[\max_i X_i]}$: Competitive Ratio
- ▶ Idea: Set threshold T, accept first $X_i \ge T$. T = price in auction.[Samuel-Cahn '84]

 \exists stopping strategy that achieves $1/2 \cdot \mathbb{E}[\max_i X_i]$, and this is tight.

$$X_1 = 1$$
 w.p. 1, and $X_2 = \begin{cases} 1/\varepsilon & \text{w.p. } \varepsilon \\ 0 & \text{w.p. } 1 - \varepsilon \end{cases}$

 $\mathbb{E}[ALG] = 1$ for all algorithms.

$$\mathbb{E}[\max\{X_1, X_2\}] = \frac{1}{\varepsilon} \cdot \varepsilon + 1 \cdot (1 - \varepsilon) = 2 - \varepsilon.$$

- $ightharpoonup rac{\mathbb{E}[ALG]}{\mathbb{E}[\max_i X_i]}$: Competitive Ratio
- Idea: Set threshold T, accept first X_i ≥ T.
 T = price in auction.
 [Samuel-Cahn '84]
 [Kleinberg, Weinberg '12]

For any T,

$$\mathbb{E}[ALG] \ge \Pr[\max_i X_i \ge T] T + \sum_i \Pr[\text{We reach } i] \mathbb{E}[\max\{X_i - T, 0\}]$$

For any T,

$$\mathbb{E}[ALG] \ge \Pr[\max_{i} X_{i} \ge T] \ T + \sum_{i} \Pr[\text{We reach } i] \ \mathbb{E}[\max\{X_{i} - T, 0\}]$$
$$\ge \Pr[\max_{i} X_{i} \ge T] \ T + \Pr[\max_{i} X_{i} < T] \ \mathbb{E}\left[\sum_{i} X_{i} - T\right]$$

For any T,

$$\mathbb{E}[ALG] \ge \Pr[\max_{i} X_{i} \ge T] \ T + \sum_{i} \Pr[\text{We reach } i] \ \mathbb{E}[\max\{X_{i} - T, 0\}]$$

$$\ge \Pr[\max_{i} X_{i} \ge T] \ T + \Pr[\max_{i} X_{i} < T] \ \mathbb{E}\left[\sum_{i} X_{i} - T\right]$$

$$\ge \Pr[\max_{i} X_{i} \ge T] \ T + (1 - \Pr[\max_{i} X_{i} \ge T]) \ \left(\mathbb{E}\left[\max_{i} X_{i}\right] - T\right).$$

For any T,

$$\begin{split} \mathbb{E}[ALG] &\geq \Pr[\max_i X_i \geq T] \ T + \sum_i \Pr[\mathsf{We} \ \mathsf{reach} \ i] \ \mathbb{E}[\max\left\{X_i - T, 0\right\}] \\ &\geq \Pr[\max_i X_i \geq T] \ T + \Pr[\max_i X_i < T] \ \mathbb{E}\left[\sum_i X_i - T\right] \\ &\geq \Pr[\max_i X_i \geq T] \ T + (1 - \Pr[\max_i X_i \geq T]) \ \Big(\mathbb{E}\left[\max_i X_i\right] - T\Big). \end{split}$$

▶ [Samuel-Cahn '84]: Set T such that $Pr[\max_i X_i \ge T] = 1/2$.

$$\mathbb{E}[ALG] \geq \frac{1}{2} T + \frac{1}{2} \left(\mathbb{E}\left[\max_{i} X_{i}\right] - T\right) = \frac{\mathbb{E}[\max_{i} X_{i}]}{2}.$$

For any T,

$$\mathbb{E}[ALG] \ge \Pr[\max_i X_i \ge T] T + \sum_i \Pr[\text{We reach } i] \mathbb{E}[\max\{X_i - T, 0\}]$$

$$\geq \Pr[\max_{i} X_{i} \geq T] T + \Pr[\max_{i} X_{i} < T] \mathbb{E} \left[\sum_{i} X_{i} - T \right]$$

$$\geq \Pr[\max_{i} X_{i} \geq T] T + (1 - \Pr[\max_{i} X_{i} \geq T]) \left(\mathbb{E} \left[\max_{i} X_{i} \right] - T \right).$$

► [Samuel-Cahn '84]: Set T such that $Pr[\max_i X_i \ge T] = 1/2$.

$$\mathbb{E}[ALG] \ge \frac{1}{2} T + \frac{1}{2} \left(\mathbb{E} \left[\max_{i} X_{i} \right] - T \right) = \frac{\mathbb{E}[\max_{i} X_{i}]}{2}.$$

► [Kleinberg, Weinberg '12]: Set $T = \frac{1}{2} \cdot \mathbb{E}[\max_i X_i]$.

$$\mathbb{E}[ALG] \ge \Pr[\max_{i} X_{i} \ge T] \frac{\mathbb{E}[\max_{i} X_{i}]}{2} + \left(1 - \Pr[\max_{i} X_{i} \ge T]\right) \cdot \left(\mathbb{E}\left[\max_{i} X_{i}\right] - \frac{1}{2} \cdot \mathbb{E}[\max_{i} X_{i}]\right)$$

For any T,

$$\begin{split} \mathbb{E}[ALG] &\geq \Pr[\max_i X_i \geq T] \ T + \sum_i \Pr[\mathsf{We} \ \mathsf{reach} \ i] \ \mathbb{E}[\max\left\{X_i - T, 0\right\}] \\ &\geq \Pr[\max_i X_i \geq T] \ T + \Pr[\max_i X_i < T] \ \mathbb{E}\left[\sum_i X_i - T\right] \\ &\geq \Pr[\max_i X_i \geq T] \ T + (1 - \Pr[\max_i X_i \geq T]) \ \Big(\mathbb{E}\left[\max_i X_i\right] - T\Big). \end{split}$$

► [Samuel-Cahn '84]: Set T such that $Pr[\max_i X_i \ge T] = 1/2$.

$$\mathbb{E}[ALG] \geq \frac{1}{2} T + \frac{1}{2} \left(\mathbb{E}\left[\max_{i} X_{i} \right] - T \right) = \frac{\mathbb{E}[\max_{i} X_{i}]}{2}.$$

► [Kleinberg, Weinberg '12]: Set $T = \frac{1}{2} \cdot \mathbb{E}[\max_i X_i]$.

$$\mathbb{E}[ALG] \ge \Pr[\max_i X_i \ge T] \frac{\mathbb{E}[\max_i X_i]}{2} + \left(1 - \Pr[\max_i X_i \ge T]\right) \frac{\mathbb{E}[\max_i X_i]}{2}$$

For any T,

$$\mathbb{E}[ALG] \ge \Pr[\max_i X_i \ge T] \ T + \sum_i \Pr[\mathsf{We} \ \mathsf{reach} \ i] \ \mathbb{E}[\max\{X_i - T, 0\}]$$

$$\geq \Pr[\max_{i} X_{i} \geq T] T + \Pr[\max_{i} X_{i} < T] \mathbb{E} \left[\sum_{i} X_{i} - T \right]$$

$$\geq \Pr[\max_{i} X_{i} \geq T] T + (1 - \Pr[\max_{i} X_{i} \geq T]) \left(\mathbb{E} \left[\max_{i} X_{i} \right] - T \right).$$

► [Samuel-Cahn '84]: Set T such that $Pr[\max_i X_i \ge T] = 1/2$.

$$\mathbb{E}[ALG] \geq \frac{1}{2} T + \frac{1}{2} \left(\mathbb{E} \left[\max_{i} X_{i} \right] - T \right) = \frac{\mathbb{E}[\max_{i} X_{i}]}{2}.$$

► [Kleinberg, Weinberg '12]: Set $T = \frac{1}{2} \cdot \mathbb{E}[\max_i X_i]$.

$$\mathbb{E}[ALG] \ge \Pr[\max_{i} X_{i} \ge T] \frac{\mathbb{E}[\max_{i} X_{i}]}{2} + \left(1 - \Pr[\max_{i} X_{i} \ge T]\right) \frac{\mathbb{E}[\max_{i} X_{i}]}{2}$$
$$= \frac{\mathbb{E}[\max_{i} X_{i}]}{2}.$$

What if objective is $\min_i X_i$? Same problem?

Objective: Minimize selected value, compare against $\overline{\mathbb{E}[\min_i X_i]}$.

Forced to select an element.

What if objective is $\min_i X_i$? Same problem?

Objective: Minimize selected value, compare against $\mathbb{E}[\min_i X_i]$.

Forced to select an element.

No bound on competitive ratio for general (non-I.I.D.) distributions.

[Esfandiari, Hajiaghayi, Liaghat, Monemizadeh '15]

▶ What about I.I.D.? $(\mathcal{D}_1 = \mathcal{D}_2 = \cdots = \mathcal{D}_n = \mathcal{D})$

What if objective is $\min_i X_i$? Same problem?

Objective: Minimize selected value, compare against $\overline{\mathbb{E}[\min_i X_i]}$.

Forced to select an element.

No bound on competitive ratio for general (non-I.I.D.) distributions.

[Esfandiari, Hajiaghayi, Liaghat, Monemizadeh '15]

▶ What about I.I.D.? $(\mathcal{D}_1 = \mathcal{D}_2 = \cdots = \mathcal{D}_n = \mathcal{D})$

No hope for universal bound: [Lucier '22]

$$\mathcal{D}: F(x) = 1 - 1/x$$
, with $x \in [1, +\infty)$ (Equal-revenue distribution).

$$\mathbb{E}[X] = 1 + \int_{1}^{\infty} (1 - F(x)) dx = +\infty$$
, but

$$\mathbb{E}[\min\{X_1, X_2\}] = 1 + \int_1^{\infty} (1 - F(x))^2 dx < +\infty.$$

I.I.D. Prophet Inequality [Hill, Kertz '82, Correa, Foncea, Hoeksma, Oosterwijk, Vredeveld '21]]

For any \mathcal{D} , \exists threshold stopping strategy $\tau_1, \tau_2, \dots, \tau_n$ that achieves $\beta \cdot \mathbb{E}[\max_i X_i]$, where $\beta \approx 0.745$, and this is tight.

I.I.D. Prophet Inequality [Hill, Kertz '82, Correa, Foncea, Hoeksma, Oosterwijk, Vredeveld '21]]

For any \mathcal{D} , \exists threshold stopping strategy $\tau_1, \tau_2, \ldots, \tau_n$ that achieves $\beta \cdot \mathbb{E}[\max_i X_i]$, where $\beta \approx 0.745$, and this is tight.

[Hill, Kertz '82]]

For any \mathcal{D} , \exists a single threshold τ such that selecting the first $X_i \ge \tau$ achieves $(1 - 1/e) \cdot \mathbb{E}[\max_i X_i] \approx 0.632 \cdot \mathbb{E}[\max_i X_i]$.

I.I.D. Prophet Inequality [Hill, Kertz '82, Correa, Foncea, Hoeksma, Oosterwijk, Vredeveld '21]]

For any \mathcal{D} , \exists threshold stopping strategy $\tau_1, \tau_2, \ldots, \tau_n$ that achieves $\beta \cdot \mathbb{E}[\max_i X_i]$, where $\beta \approx 0.745$, and this is tight.

[Hill, Kertz '82]]

For any \mathcal{D} , \exists a single threshold τ such that selecting the first $X_i \geq \tau$ achieves $(1 - 1/e) \cdot \mathbb{E}[\max_i X_i] \approx 0.632 \cdot \mathbb{E}[\max_i X_i]$.

Minimization?

Intuition:

Set $T = c \cdot \mathbb{E}[\min_i X_i]$.

I.I.D. Prophet Inequality [Hill, Kertz '82, Correa, Foncea, Hoeksma, Oosterwijk, Vredeveld '21]]

For any \mathcal{D} , \exists threshold stopping strategy $\tau_1, \tau_2, \dots, \tau_n$ that achieves $\beta \cdot \mathbb{E}[\max_i X_i]$, where $\beta \approx 0.745$, and this is tight.

[Hill, Kertz '82]]

For any \mathcal{D} , \exists a single threshold τ such that selecting the first $X_i \geq \tau$ achieves $(1 - 1/e) \cdot \mathbb{E}[\max_i X_i] \approx 0.632 \cdot \mathbb{E}[\max_i X_i]$.

Minimization?

Intuition False Intuition:

Doesn't work! Pr[We are forced to select X_n] $\geq c$.

Towards a Unified Analysis

Towards a Unified Analysis

Optimal policy: Set $\tau_i = \mathbb{E}[\text{OPTALG}_{i+1,\dots,n}]$, accept first $X_i \leq \tau_i$. How to analyze it?

Towards a Unified Analysis

Optimal policy: Set $\tau_i = \mathbb{E}[\text{OPTALG}_{i+1,\dots,n}]$, accept first $X_i \leq \tau_i$. How to analyze it?

Worst-case instance for Max: $n \to \infty \Longrightarrow \text{Fix } \mathcal{D} \text{ and take } n \to \infty.$

Asymptotic Competitive Ratio (ACR)

$$\lambda_{min} = \lim_{n \to \infty} \frac{\mathbb{E}[ALG(n)]}{\mathbb{E}[\min_{i=1}^{n} X_i]}.$$

Towards a Unified Analysis

Optimal policy: Set $\tau_i = \mathbb{E}[\text{OPTALG}_{i+1,\dots,n}]$, accept first $X_i \leq \tau_i$. How to analyze it?

Worst-case instance for Max: $n \to \infty \Longrightarrow \text{Fix } \mathcal{D} \text{ and take } n \to \infty.$

Asymptotic Competitive Ratio (ACR)

$$\lambda_{min} = \lim_{n \to \infty} \frac{\mathbb{E}[ALG(n)]}{\mathbb{E}[\min_{i=1}^{n} X_i]}. \qquad \lambda_{max} = \lim_{n \to \infty} \frac{\mathbb{E}[ALG(n)]}{\mathbb{E}[\max_{i=1}^{n} X_i]}.$$

Towards a Unified Analysis

Optimal policy: Set $\tau_i = \mathbb{E}[\text{OPTALG}_{i+1,\dots,n}]$, accept first $X_i \leq \tau_i$. How to analyze it?

Worst-case instance for Max: $n \to \infty \Longrightarrow \text{Fix } \mathcal{D} \text{ and take } n \to \infty.$

Asymptotic Competitive Ratio (ACR)

$$\lambda_{min} = \lim_{n \to \infty} \frac{\mathbb{E}[ALG(n)]}{\mathbb{E}[\min_{i=1}^{n} X_i]}. \qquad \lambda_{max} = \lim_{n \to \infty} \frac{\mathbb{E}[ALG(n)]}{\mathbb{E}[\max_{i=1}^{n} X_i]}.$$

- $M_n = \max \{X_1, \dots, X_n\}$
- $m_n = \min \{X_1, \dots, X_n\}$
- ▶ Distribution of M_n , m_n as $n \to \infty$?

Towards a Unified Analysis

Optimal policy: Set $\tau_i = \mathbb{E}[\text{OPTALG}_{i+1,\dots,n}]$, accept first $X_i \leq \tau_i$. How to analyze it?

Worst-case instance for Max: $n \to \infty \Longrightarrow \text{Fix } \mathcal{D} \text{ and take } n \to \infty.$

Asymptotic Competitive Ratio (ACR)

$$\lambda_{min} = \lim_{n \to \infty} \frac{\mathbb{E}[ALG(n)]}{\mathbb{E}[\min_{i=1}^{n} X_i]}. \qquad \lambda_{max} = \lim_{n \to \infty} \frac{\mathbb{E}[ALG(n)]}{\mathbb{E}[\max_{i=1}^{n} X_i]}.$$

- $M_n = \max \{X_1, \dots, X_n\}$
- $m_n = \min \{X_1, \dots, X_n\}$
- ▶ Distribution of M_n , m_n as $n \to \infty$?
- $ightharpoonup \lim_{n\to\infty} M_n = +\infty$, $\lim_{n\to\infty} m_n = 0 \Longrightarrow \text{Re-scaling}$

Extreme Value Theorem [Fisher, Tippett '28, Gnedenko '43]

Assume there exist sequences $a_n > 0, b_n \in \mathbb{R}$ such that

$$\lim_{n\to\infty}F_{M_n}(a_nx+b_n)=G_{\gamma}^+(x).$$

$$G_{\gamma}^{+}(x) = \begin{cases} \exp\left(-(1+\gamma x)^{-1/\gamma}\right), & \text{if } \gamma \neq 0\\ \exp\left(-\exp\left(-x\right)\right), & \text{if } \gamma = 0 \end{cases}.$$

Extreme Value Theorem [Fisher, Tippett '28, Gnedenko '43]

Assume there exist sequences $a_n > 0, b_n \in \mathbb{R}$ such that

$$\lim_{n\to\infty} F_{M_n}(a_n x + b_n) = G_{\gamma}^+(x).$$

$$G_{\gamma}^{+}(x) = \begin{cases} \exp\left(-(1+\gamma x)^{-1/\gamma}\right), & \text{if } \gamma \neq 0\\ \exp\left(-\exp\left(-x\right)\right), & \text{if } \gamma = 0 \end{cases}.$$

- G: Extreme Value Distribution, γ : Extreme Value Index
- ► Three distinct G_{γ}^{+} 's:
 - $ightharpoonup \gamma < 0$: Reverse Weibull
 - $\gamma = 0$: Gumbel
 - $ightharpoonup \gamma > 0$: Fréchet

Extreme Value Theorem [Fisher, Tippett '28, Gnedenko '43]

Assume there exist sequences $a_n > 0, b_n \in \mathbb{R}$ such that

$$\lim_{n\to\infty} F_{M_n}(a_n x + b_n) = G_{\gamma}^+(x).$$

$$G_{\gamma}^{+}(x) = \begin{cases} \exp\left(-(1+\gamma x)^{-1/\gamma}\right), & \text{if } \gamma \neq 0\\ \exp\left(-\exp\left(-x\right)\right), & \text{if } \gamma = 0 \end{cases}.$$

- G: Extreme Value Distribution, γ : Extreme Value Index
- ► Three distinct G_{γ}^{+} 's: $\gamma < 0$, $\gamma = 0$, $\gamma > 0$
- Central Limit Theorem analogue for Max.
- **Can get similar result for Min, but** γ **changes.**

Extreme Value Theorem [Fisher, Tippett '28, Gnedenko '43]

Assume there exist sequences $a_n > 0, b_n \in \mathbb{R}$ such that

$$\lim_{n\to\infty} F_{M_n}(a_n x + b_n) = G_{\gamma}^+(x).$$

$$G_{\gamma}^{+}(x) = \begin{cases} \exp\left(-(1+\gamma x)^{-1/\gamma}\right), & \text{if } \gamma \neq 0\\ \exp\left(-\exp\left(-x\right)\right), & \text{if } \gamma = 0 \end{cases}.$$

- G: Extreme Value Distribution, γ : Extreme Value Index
- ► Three distinct G_{γ}^{+} 's: $\gamma < 0$, $\gamma = 0$, $\gamma > 0$
- Central Limit Theorem analogue for Max.
- Can get similar result for M_{IN}, but γ changes.
- ightharpoonup Conditions $\Longrightarrow \mathcal{D}$ follows EVT.

IID PI via Extreme Value Theory

Theorem [L., Mehta '22, L. '23]

$$\Gamma(x) = (x-1)!$$

Assume there exist sequences $a_n > 0, b_n \in \mathbb{R}$ such that

$$\lim_{n\to\infty} F_{M_n}(a_nx+b_n) = G_{\gamma}^+(x) \qquad \qquad \lim_{n\to\infty} F_{m_n}(a_nx+b_n) = G_{\gamma}^-(x)$$
 for some γ

Then, the optimal DP achieves a competitive ratio, as $n \to \infty$, of

$$ACR_{Max} = \min \left\{ \frac{(1-\gamma)^{-\gamma}}{\Gamma(1-\gamma)}, 1 \right\}.$$

$$ACR_{Min} = \max \left\{ \frac{(1-\gamma)^{-\gamma}}{\Gamma(1-\gamma)}, 1 \right\}.$$

IID PI via Extreme Value Theory

Theorem [L., Mehta '22, L. '23]

$$\Gamma(x) = (x-1)!$$

Assume there exist sequences $a_n > 0, b_n \in \mathbb{R}$ such that

$$\lim_{n\to\infty} F_{M_n}(a_nx+b_n) = G_{\gamma}^+(x) \qquad \qquad \lim_{n\to\infty} F_{m_n}(a_nx+b_n) = G_{\gamma}^-(x)$$
 for some γ

Then, the optimal DP achieves a competitive ratio, as $n \to \infty$, of

$$ACR_{Max} = \min \left\{ \frac{(1-\gamma)^{-\gamma}}{\Gamma(1-\gamma)}, 1 \right\}.$$

$$ACR_{Min} = \max \left\{ \frac{(1-\gamma)^{-\gamma}}{\Gamma(1-\gamma)}, 1 \right\}.$$

- Distribution-optimal closed form!
- ► Unified analysis of competitive ratio for both Max and Min.

IID PI via Extreme Value Theory

Theorem [L., Mehta '22, L. '23]

$$\Gamma(x) = (x-1)!$$

Assume there exist sequences $a_n > 0, b_n \in \mathbb{R}$ such that

$$\lim_{n\to\infty} F_{M_n}(a_nx+b_n) = G_{\gamma}^+(x) \qquad \qquad \lim_{n\to\infty} F_{m_n}(a_nx+b_n) = G_{\gamma}^-(x)$$
 for some γ

Then, the optimal DP achieves a competitive ratio, as $n \to \infty$, of

$$ACR_{Max} = \min \left\{ \frac{(1-\gamma)^{-\gamma}}{\Gamma(1-\gamma)}, 1 \right\}.$$

$$ACR_{Min} = \max \left\{ \frac{(1-\gamma)^{-\gamma}}{\Gamma(1-\gamma)}, 1 \right\}.$$

- Distribution-optimal closed form!
- Unified analysis of competitive ratio for both Max and Min.
- \triangleright D MHR \Longrightarrow $ACR_{Max} = 1$ & $ACR_{Min} \le 2$

Asymptotic Competitive Ratio

For $\gamma \to -\infty$, by Stirling's approximation

$$\frac{(1-\gamma)^{-\gamma}}{\Gamma(1-\gamma)}\approx e^{-\gamma}.$$

Asymptotic Competitive Ratio

ightharpoonup "\$\mathcal{D}\$ follows EVT": most general class we expect closed-form.

$$F(t) = \Pr_{X \sim \mathcal{D}}[X \leq t], \quad F^{\leftarrow}(p) : \text{inverse of } F \text{ ("Quantile function")}.$$

Max	Min

$$F(t) = \Pr_{X \sim \mathcal{D}}[X \le t], \quad F^{\leftarrow}(p) : \text{inverse of } F \text{ ("Quantile function")}.$$

$$\mathbb{E}[ALG(n)] \approx F^{\leftarrow} \left(1 - \frac{1 - \gamma}{n}\right) \qquad \qquad \mathbb{E}[ALG(n)] \approx F^{\leftarrow} \left(\frac{1 - \gamma}{n}\right)$$

$$F(t) = \Pr_{X \sim \mathcal{D}}[X \le t], \quad F^{\leftarrow}(p) : \text{inverse of } F \text{ ("Quantile function")}.$$

$$\mathbb{E}[ALG(n)] \approx F^{\leftarrow} \left(1 - \frac{1 - \gamma}{n}\right) \qquad \mathbb{E}[ALG(n)] \approx F^{\leftarrow} \left(\frac{1 - \gamma}{n}\right)$$

$$\mathbb{E}\left[\max_{i=1}^{n} X_{i}\right] \approx \Gamma(1 - \gamma) \ F^{\leftarrow} \left(1 - \frac{1}{n}\right) \qquad \mathbb{E}\left[\min_{i=1}^{n} X_{i}\right] \approx \Gamma(1 - \gamma) \ F^{\leftarrow} \left(\frac{1}{n}\right)$$

$$\Gamma(x) = (x-1)!$$

$$F(t) = \Pr_{X \sim \mathcal{D}}[X \leq t], \quad F^{\leftarrow}(p) : \text{inverse of } F \text{ ("Quantile function")}.$$

$$\mathbb{E}[ALG(n)] \approx F^{\leftarrow} \left(1 - \frac{1 - \gamma}{n}\right) \qquad \mathbb{E}[ALG(n)] \approx F^{\leftarrow} \left(\frac{1 - \gamma}{n}\right)$$

$$\mathbb{E}\left[\max_{i=1}^{n} X_{i}\right] \approx \Gamma(1 - \gamma) \ F^{\leftarrow} \left(1 - \frac{1}{n}\right) \qquad \mathbb{E}\left[\min_{i=1}^{n} X_{i}\right] \approx \Gamma(1 - \gamma) \ F^{\leftarrow} \left(\frac{1}{n}\right)$$

$$F^{\leftarrow} \left(1 - \frac{c}{n}\right) \approx c^{-\gamma} \ F^{\leftarrow} \left(1 - \frac{1}{n}\right) \qquad F^{\leftarrow} \left(\frac{c}{n}\right) \approx c^{-\gamma} \ F^{\leftarrow} \left(\frac{1}{n}\right)$$

$$\Gamma(x) = (x-1)!$$

Competition Complexity

Competition Complexity

What if we want $\mathbb{E}[ALG] \ge \mathbb{E}[\max_i X_i]$ or $\mathbb{E}[ALG] \le \mathbb{E}[\min_i X_i]$? \Longrightarrow give ALG more random variables!

Competition Complexity

What if we want $\mathbb{E}[ALG] \ge \mathbb{E}[\max_i X_i]$ or $\mathbb{E}[ALG] \le \mathbb{E}[\min_i X_i]$?

 \implies give ALG more random variables!

Competition Complexity

For fixed n, the *competition complexity* of a distribution \mathcal{D} is

$$\inf \left\{ c \;\middle|\; \mathbb{E}[ALG(c\;n)] \geq \mathbb{E}[\max_{i=1}^n X_i] \right\} \qquad \inf \left\{ c \;\middle|\; \mathbb{E}[ALG(c\;n)] \leq \mathbb{E}[\min_{i=1}^n X_i] \right\}$$
 for Max

For Max and $\mathcal{D} = \mathcal{D}(n)$, it can be unbounded. [Brustle, Correa, Dütting, Verdugo '22]

Asymptotic Competition Complexity via EVT

What if we fix \mathcal{D} and take $n \to \infty$? (Asymptotic Competition Complexity - ACC)

Theorem [L., Verdugo '23]

For every distribution following EVT,

$$ACC_{Max}(\gamma) = ACC_{Min}(\gamma)$$

Asymptotic Competition Complexity via EVT

What if we fix \mathcal{D} and take $n \to \infty$? (Asymptotic Competition Complexity - ACC)

Theorem [L., Verdugo '23]

For every distribution following EVT,

$$ACC_{Max}(\gamma) = ACC_{Min}(\gamma) = (ACR(\gamma))^{-1/\gamma}$$

Asymptotic Competition Complexity via EVT

What if we fix \mathcal{D} and take $n \to \infty$? (Asymptotic Competition Complexity - ACC)

Theorem [L., Verdugo '23]

For every distribution following EVT,

$$ACC_{Max}(\gamma) = ACC_{Min}(\gamma) = \left(ACR(\gamma)\right)^{-1/\gamma} = (1-\gamma)\left(\Gamma(1-\gamma)\right)^{1/\gamma}.$$

Asymptotic Competition Complexity

▶ $ACC \le e$ for all \mathcal{D} following EVT.

Overview

Distribution-optimal prophet inequalities

[L., Mehta '22, L. '23]

- Unified proof for both max and min I.I.D prophet inequality
- Techniques: Extreme Value Theory, Regularly-Varying Functions
- Competition complexity

2. Oracle-augmented prophet inequalities

[Har-Peled, Harb, L. '23]

- Connection with top-1-of-k model
- Upper-lower bounds for I.I.D. case
- Upper-lower bounds for general case (adversarial order)
- 3. Optimal greedy OCRSs [L., '22]
 - ► ¹/e-selectable greedy OCRS for single-item
 - ► 1/e hardness
 - Extension to transversal matroids
- 4. Submodular prophet inequalities [Chekuri, L. '21]
 - Small constant SPI via OCRS
 - Generalized framework for several constraints
 - Correlation gap

Oracle-Augmented Prophet Inequalities

- $ightharpoonup O_k$ model:
 - Assume *ALG* has *k* calls to *O*, who knows X_1, \ldots, X_n .
- ► Step *i*:
 - - \neg $X_i < \max_{j=i+1}^n X_j \Longrightarrow ALG \text{ rejects } X_i$
- "Algorithms with predictions"

Oracle-Augmented Prophet Inequalities

- \triangleright O_k model:
 - Assume ALG has k calls to O, who knows X_1, \ldots, X_n .
- ► Step *i*:
 - - \neg $X_i < \max_{i=i+1}^n X_j \Longrightarrow ALG \text{ rejects } X_i$
- "Algorithms with predictions"
- ► Top-1-of-k model:
 - ► ALG selects S with $|S| \le k$, but only $\max_{X_i \in S} X_i$ matters [Gilbert, Mosteller '66], [Assaf, Samuel-Cahn '00], [Assaf, Goldstein, Samuel-Cahn '02]

Oracle-Augmented Prophet Inequalities

- ▶ O_k model:
 - Assume *ALG* has *k* calls to *O*, who knows X_1, \ldots, X_n .
- ► Step *i*:
 - - \neg $X_i < \max_{j=i+1}^n X_j \Longrightarrow ALG \text{ rejects } X_i$
- "Algorithms with predictions"
- ► Top-1-of-*k* model:
 - ► ALG selects S with $|S| \le k$, but only $\max_{X_i \in S} X_i$ matters [Gilbert, Mosteller '66], [Assaf, Samuel-Cahn '00], [Assaf, Goldstein, Samuel-Cahn '02]
- ightharpoonup CR: Maximize $\mathbb{E}[ALG]/\mathbb{E}[\max_i X_i]$
- ightharpoonup PbM: Maximize $Pr[ALG \text{ selects } \max_i X_i]$

Theorem [Har-Peled, Harb, L. '23]

▶ PbM: $O_k \equiv \text{Top-1-of-}(k+1)$

Theorem [Har-Peled, Harb, L. '23]

▶ PbM: $O_k \equiv \text{Top-1-of-}(k+1)$

▶ CR: $\mathbb{E}[ALG(O_k)] \le \mathbb{E}[OPTALG(Top-1-of-(k+1))]$

Theorem [Har-Peled, Harb, L. '23]

- ▶ PbM: $O_k \equiv \text{Top-1-of-}(k+1)$
- ▶ CR: $\mathbb{E}[ALG(O_k)] \leq \mathbb{E}[OPTALG(Top-1-of-(k+1))]$
- ► <u>I.I.D.</u>: $1 O(k^{-k/5}) \le PbM \le 1 O(k^{-k})$
- General (adversarial order) :

$$\overline{1 - O(e^{-k/5.18})} \le CR \le 1 - O(e^{-k/1.44})$$

Single-threshold algorithms.

Theorem [Har-Peled, Harb, L. '23]

- ▶ PbM: $O_k \equiv \text{Top-1-of-}(k+1)$
- ▶ CR: $\mathbb{E}[ALG(O_k)] \leq \mathbb{E}[OPTALG(Top-1-of-(k+1))]$
- ► <u>I.I.D.</u>: $1 O(k^{-k/5}) \le PbM \le 1 O(k^{-k})$
- General (adversarial order) :

$$\overline{1 - O(e^{-k/5.18})} \le CR \le 1 - O(e^{-k/1.44})$$

Single-threshold algorithms.

Theorem [Har-Peled, Harb, L. '23]

- ▶ PbM: $O_k \equiv \text{Top-1-of-}(k+1)$
- ► CR: $\mathbb{E}[ALG(O_k)] \leq \mathbb{E}[OPTALG(Top-1-of-(k+1))]$

► I.I.D.:
$$1 - O(k^{-k/5}) \le PbM \le 1 - O(k^{-k})$$

General (adversarial order) :

$$1 - O\left(e^{-k/5.18}\right) \le CR \le 1 - O\left(e^{-k/1.44}\right)$$

Single-threshold algorithms.

Improves upon $1 - O(e^{-k/6})$ [Ezra, Feldman, Nehama '18]

$$CR: \frac{\mathbb{E}[ALG]}{\mathbb{E}[\max_i X_i]} \qquad PbM: \Pr[ALG \text{ selects } \max_i X_i]$$

Future Directions

- ► Principal wants to delegate a PI instance to *k* agents. [Liaw, L., Perlroth, Schvartzman, Wang '24].
- Beyond the independence assumption. [L., Patton, Singla '24].
- Multiple selection minimization PI.
- Free-Order PI: ALG can choose order of realizations. Can we get ≈ 0.745 (I.I.D. constant)?

Thank You

Thank You

Questions?

