Minimization is Harder in the Prophet World

Vasilis Livanos

University of Illinois Urbana-Champaign \rightarrow University of Chile

Joint work with

Ruta Mehta

SODA 2024

January 7th, 2024

Prophet Inequality

- ▶ Want to sell an orange. We see *n* buyers *sequentially*.
- Buyer i has private valuation v_i. How to offer prices?
 - Option 1: Run an auction.

Prophet Inequality

- ▶ Want to sell an orange. We see *n* buyers sequentially.
- Buyer i has private valuation v_i. How to offer prices?
 - Option 1: Run an auction.
 - Option 2: Become a grocer!

Prophet Inequality

▶ Want to sell an orange. We see *n* buyers sequentially.

- Buyer i has private valuation v_i. How to offer prices?
 - Option 1: Run an auction.
 - Option 2: Become a grocer!

Prophet Inequality [Krengel, Sucheston, Garling '77]

 $X_1, X_2, \ldots, X_n \sim (\text{known}) \mathcal{D}_1, \mathcal{D}_2, \ldots, \mathcal{D}_n$ arrive in *adversarial* order.

- Design stopping time to maximize selected value.
- Step *i*: Take-it-or-leave-it decision.
- Compare against all-knowing prophet: $\mathbb{E}[\max_i X_i]$.

 $X_1 = 13.93$

 $X_1 = 13.93$ $X_2 = 8.15$

$$\mathcal{U}[13,14]$$
 $\mathcal{U}[7,16]$ $\mathcal{U}[0,20]$ $\left\{ \begin{smallmatrix} 1000 & ext{w.p. } rac{1}{100} \\ 0 & ext{otherwise} \end{smallmatrix}
ight.$

 $X_1 = 13.93$

$$X_2 = 8.15$$

$$X_3 = 5.60$$

$$\mathcal{U}[13, 14] \quad \mathcal{U}[7, 16] \quad \mathcal{U}[0, 20] \quad \begin{cases} 1000 & \text{w.p.} \frac{1}{100} \\ 0 & \text{otherwise} \end{cases}$$

$$X_1 = 13.93 \qquad X_2 = 8.15 \qquad X_3 = 5.60 \qquad X_4 = 0$$

 $\mathbb{E}[\max \{X_1, X_2, X_3, X_4\}] \approx 24.66$ $\mathbb{E}[OPTALG \{X_1, X_2, X_3, X_4\}] \approx 13.37$

Optimal strategy was to continue through to X_4 .

Prophet Inequality [Krengel, Sucheston, Garling '77, '78]

 \exists stopping strategy that achieves $1/2 \cdot \mathbb{E}[\max_i X_i]$, and this is tight.

$$X_1 = 1$$
 w.p. 1, and $X_2 = \begin{cases} 1/\varepsilon & \text{w.p. } \varepsilon \\ 0 & \text{w.p. } 1 - \varepsilon \end{cases}$

 $\mathbb{E}[ALG] = 1$ for all algorithms.

 $\mathbb{E}[\max{\{X_1, X_2\}}] = \frac{1}{\varepsilon} \cdot \varepsilon + 1 \cdot (1 - \varepsilon) = 2 - \varepsilon.$

 Applications in Posted Price Mechanisms. [Hajiaghayi, Kleinberg, Sandholm '07, Chawla, Hartline, Malec, Sivan '10]

$$X_1 = 1$$
 w.p. 1, and $X_2 = \begin{cases} 1/\varepsilon & \text{w.p. } \varepsilon \\ 0 & \text{w.p. } 1 - \varepsilon \end{cases}$

 $\mathbb{E}[\mathsf{ALG}] = 1$ for all algorithms.

 $\mathbb{E}[\max{\{X_1, X_2\}}] = \frac{1}{\varepsilon} \cdot \varepsilon + 1 \cdot (1 - \varepsilon) = 2 - \varepsilon.$

 Applications in Posted Price Mechanisms. [Hajiaghayi, Kleinberg, Sandholm '07, Chawla, Hartline, Malec, Sivan '10]

• Idea: Set threshold T, accept first
$$X_i \ge T$$
.

$$X_1 = 1$$
 w.p. 1, and $X_2 = \begin{cases} 1/\varepsilon & \text{w.p. } \varepsilon \\ 0 & \text{w.p. } 1 - \varepsilon \end{cases}$

 $\mathbb{E}[\mathsf{ALG}] = 1$ for all algorithms.

 $\mathbb{E}[\max{\{X_1, X_2\}}] = \frac{1}{\varepsilon} \cdot \varepsilon + 1 \cdot (1 - \varepsilon) = 2 - \varepsilon.$

- Applications in Posted Price Mechanisms. [Hajiaghayi, Kleinberg, Sandholm '07, Chawla, Hartline, Malec, Sivan '10]
- ▶ <u>Idea:</u> Set threshold *T*, accept first $X_i \ge T$. Pr[max_i $X_i \ge T$] = $\frac{1}{2}$ [Samuel-Cahn '84]

$$X_1 = 1$$
 w.p. 1, and $X_2 = \begin{cases} 1/\varepsilon & \text{w.p. } \varepsilon \\ 0 & \text{w.p. } 1 - \varepsilon \end{cases}$

 $\mathbb{E}[\mathsf{ALG}] = 1$ for all algorithms.

 $\mathbb{E}[\max{\{X_1, X_2\}}] = \frac{1}{\varepsilon} \cdot \varepsilon + 1 \cdot (1 - \varepsilon) = 2 - \varepsilon.$

- Applications in Posted Price Mechanisms. [Hajiaghayi, Kleinberg, Sandholm '07, Chawla, Hartline, Malec, Sivan '10]
- ▶ <u>Idea:</u> Set threshold *T*, accept first $X_i \ge T$. Pr[max_i $X_i \ge T$] = $\frac{1}{2}$ [Samuel-Cahn '84] $T = \mathbb{E}[\max_i X_i]/2$ [Kleinberg, Weinberg '12]

Special Case: I.I.D. Prophet Inequality

I.I.D. Prophet Inequality: $\mathcal{D}_1 = \mathcal{D}_2 = \cdots = \mathcal{D}_n = \mathcal{D}$.

Special Case: I.I.D. Prophet Inequality

I.I.D. Prophet Inequality: $\mathcal{D}_1 = \mathcal{D}_2 = \cdots = \mathcal{D}_n = \mathcal{D}$.

[Hill, Kertz '82]

For any \mathcal{D} , \exists a single threshold τ such that selecting the first $X_i \ge \tau$ achieves $(1 - 1/e) \cdot \mathbb{E}[\max_i X_i] \approx 0.632 \cdot \mathbb{E}[\max_i X_i]$.

I.I.D. Prophet Inequality: $\mathcal{D}_1 = \mathcal{D}_2 = \cdots = \mathcal{D}_n = \mathcal{D}$.

[Hill, Kertz '82]

For any \mathcal{D} , \exists a single threshold τ such that selecting the first $X_i \ge \tau$ achieves $(1 - 1/e) \cdot \mathbb{E}[\max_i X_i] \approx 0.632 \cdot \mathbb{E}[\max_i X_i]$.

[Correa, Foncea, Hoeksma, Oosterwijk, Vredeveld '21]

For any \mathcal{D} , \exists threshold stopping strategy $\tau_1, \tau_2, \ldots, \tau_n$ that achieves $\beta \cdot \mathbb{E}[\max_i X_i]$, where $\beta \approx 0.745$.

Procurement \implies Minimization

Procurement \implies Minimization

What if objective is $\min_i X_i$? Same problem?

- Objective: Minimize selected value, compare against $\overline{\mathbb{E}[\min_i X_i]}$.
- Trivial solution: Select nothing.
 - \implies Forced to select an element.

What if objective is $\min_i X_i$? Same problem?

- Objective: Minimize selected value, compare against $\overline{\mathbb{E}[\min_i X_i]}$.
- Trivial solution: Select nothing.
 - \implies Forced to select an element.
- No bound on competitive ratio for general distributions. [Esfandiari, Hajiaghayi, Liaghat, Monemizadeh '15]

$$X_1 = 1$$
 w.p. 1, and $X_2 = \begin{cases} 1/\varepsilon & \text{w.p. } \varepsilon \\ 0 & \text{w.p. } 1 - \varepsilon \end{cases}$

 $\mathbb{E}\left[\mathsf{ALG}\right] = 1, \quad \mathbb{E}[\min\left\{X_1, X_2\right\}] = 1 \cdot \varepsilon + 0 \cdot (1 - \varepsilon) = \varepsilon.$

What about I.I.D.?

What about I.I.D.?

 $\frac{\text{Intuition:}}{\text{Set } T = c \cdot \mathbb{E}[\min_i X_i].}$

What about I.I.D.?

Intuition False Intuition:

Doesn't work! Pr[We are forced to select X_n] $\geq c$.

What about I.I.D.?

Intuition False Intuition:

Doesn't work! Pr[We are forced to select X_n] $\geq c$.

No hope for universal bound: [Lucier '22]

 \mathcal{D} : $F(x) = 1 - \frac{1}{x}$, with $x \in [1, +\infty)$ (Equal-revenue distribution). $\mathbb{E}[X] = 1 + \int_{1}^{\infty} (1 - F(x)) dx = +\infty$, but

 $\mathbb{E}[\min\{X_1, X_2\}] = 1 + \int_1^\infty (1 - F(x))^2 \, dx = 2 < +\infty.$

Idea

Look at "fatness" of \mathcal{D} 's tail. Captured by \mathcal{D} 's Hazard Rate.

$$h(x) = \frac{f(x)}{1 - F(x)} \qquad \left(\text{also } H(x) = \int_0^x h(u) \, du \right)$$

Intuition: $h(x) = \Pr[X = x | X \ge x]$ (for discrete distributions).

Idea

Look at "fatness" of \mathcal{D} 's tail. Captured by \mathcal{D} 's Hazard Rate.

$$h(x) = \frac{f(x)}{1 - F(x)} \qquad \left(\text{also } H(x) = \int_0^x h(u) \, du \right)$$

Intuition: $h(x) = \Pr[X = x | X \ge x]$ (for discrete distributions).

MHR Distribution

h is increasing.

Important subclass, lots of past work.
 Good guarantees in applications (e.g. auction revenue maximization).

Idea

Look at "fatness" of \mathcal{D} 's tail. Captured by \mathcal{D} 's Hazard Rate.

$$h(x) = \frac{f(x)}{1 - F(x)} \qquad \left(\text{also } H(x) = \int_0^x h(u) \, du \right)$$

Intuition: $h(x) = \Pr[X = x | X \ge x]$ (for discrete distributions).

MHR Distribution

h is increasing.

Important subclass, lots of past work.
 Good guarantees in applications (e.g. auction revenue maximization).

Entire Distribution

 \mathcal{D} is *entire* if *H* has convergent series expansion $H(x) = \sum_{i=1}^{\infty} a_i x^{d_i}$ (where $0 < d_1 < d_2 < \dots$) for every *x* in the support of \mathcal{D} .

E.g. uniform, exponential, Gaussian, Weibull, Rayleigh, beta

Single Threshold

Single threshold algorithms suffice for maximization.

Single Threshold

Single threshold algorithms suffice for maximization.

Theorem 1

For every entire distribution \mathcal{D} , \exists a single threshold algorithm that is $\Theta((\log n)^{1/d_1})$ -competitive, and this is the best possible.

- Cannot achieve a constant approximation, even for "easy" distributions with very light tail, e.g. exponential.
- d₁: Valuation of H, only important quantity!

Where's The Good Stuff?

Optimal policy: Set $\tau_i = \mathbb{E}[\text{OPTALG}_{i+1,\dots,n}]$, accept first $X_i \leq \tau_i$.

Where's The Good Stuff?

Optimal policy: Set $\tau_i = \mathbb{E}[\text{OPTALG}_{i+1,\dots,n}]$, accept first $X_i \leq \tau_i$.

Theorem 2

For every distribution,

- If $\mathbb{E}[X] = +\infty$, the competitive ratio is infinite.
- If E[X] < +∞, there exists a constant *c*-competitive minimization prophet inequality, and we characterize the optimal *c* as the solution to a simple inequality on the quantiles of D.

Where's The Good Stuff?

Optimal policy: Set $\tau_i = \mathbb{E}[\text{OPTALG}_{i+1,\dots,n}]$, accept first $X_i \leq \tau_i$.

Theorem 2

For every distribution,

- If $\mathbb{E}[X] = +\infty$, the competitive ratio is infinite.
- If E[X] < +∞, there exists a constant *c*-competitive minimization prophet inequality, and we characterize the optimal *c* as the solution to a simple inequality on the quantiles of D.
- $\circ c$ is distribution-dependent can be arbitrarily large.
- First distribution-sensitive guarantees for prophet inequalities.
- New use of hazard rate in prophet inequalities as analysis tool.

More Positive Results

Theorem 3

For every MHR distribution, there exists a 2-competitive minimization prophet inequality, and this is the best-possible.

More Positive Results

Theorem 3

For every MHR distribution, there exists a 2-competitive minimization prophet inequality, and this is the best-possible.

What does c look like?

Theorem 4

For every entire distribution,

$$c(d_1) = \frac{(1 + 1/d_1)^{1/d_1}}{\Gamma(1 + 1/d_1)} = \Theta\left(e^{1/d_1}\right).$$

• Γ : Gamma function. $\Gamma(n + 1) = n!$

Open Problems

- Extend minimization PI to multiple selection.
- ▶ What can you get with 1 < *k* < *n* thresholds?
- Distribution-sensitive constants for maximization?

Thank You!

Questions?

Good Question!

Hidden under the rag:

$$c = \inf\left\{c' \left| c' - \frac{F^{-1}\left(\frac{\lambda_{\mathcal{D}}\left(1 + \frac{1}{c'-1}\right)}{n}\right)}{F^{-1}\left(\frac{1}{n}\right)} \ge 0\right\}.$$

Good Question!

Hidden under the rag:

$$c = \inf\left\{c' \left| c' - \frac{F^{-1}\left(\frac{\lambda_{\mathcal{D}}\left(1 + \frac{1}{c'-1}\right)}{n}\right)}{F^{-1}\left(\frac{1}{n}\right)} \ge 0\right\}.$$

$$T = O\left(\left(\frac{\log n}{n}\right)^{1/d_1}\right).$$