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Prophet Inequality

▶ Want to sell an orange. We see n buyers sequentially.
▶ Buyer i has private valuation vi. How to offer prices?

▶ Option 1: Run an auction.

▶ Option 2: Become a grocer!

Prophet Inequality [Krengel, Sucheston, Garling ’77]

X1, X2, . . . , Xn ∼ (known) D1,D2, . . . ,Dn

arrive in adversarial order.

▶ Design stopping time to maximize selected value.
▶ Step i: Take-it-or-leave-it decision.
▶ Compare against all-knowing prophet: E[maxi Xi].
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X1 = 13.93 X2 = 8.15 X3 = 5.60 X4 = 0

E[max {X1, X2, X3, X4}] ≈ 24.66

E[OPT ALG {X1, X2, X3, X4}] ≈ 13.37

Optimal strategy was to continue through to X4.
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Prophet Inequality [Krengel, Sucheston, Garling ’77, ’78]
∃ stopping strategy that achieves 1/2 · E[maxi Xi],
and this is tight.

X1 = 1 w.p. 1, and X2 =

1/ε w.p. ε

0 w.p. 1 − ε

E [ALG] = 1 for all algorithms.

E[max {X1, X2}] = 1
ε · ε + 1 · (1 − ε) = 2 − ε.

▶ Applications in Posted Price Mechanisms.
[Hajiaghayi, Kleinberg, Sandholm ’07, Chawla, Hartline, Malec,
Sivan ’10]

▶ Idea: Set threshold T , accept first Xi ≥ T .

Pr[maxi Xi ≥ T ] = 1/2 [Samuel-Cahn ’84]
T = E[maxi Xi]/2 [Kleinberg, Weinberg ’12]
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Special Case: I.I.D. Prophet Inequality

I.I.D. Prophet Inequality: D1 = D2 = · · · = Dn = D.

[Hill, Kertz ’82]
For any D, ∃ a single threshold τ such that selecting the first Xi ≥ τ

achieves (1 − 1/e) · E[maxi Xi] ≈ 0.632 · E[maxi Xi].

[Correa, Foncea, Hoeksma, Oosterwijk, Vredeveld ’21]
For any D, ∃ threshold stopping strategy τ1, τ2, . . . , τn that achieves
β · E[maxi Xi], where β ≈ 0.745.
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Procurement =⇒ Minimization

What if objective is mini Xi? Same problem?
▶ Objective: Minimize selected value, compare against
E[mini Xi].

▶ Trivial solution: Select nothing.
=⇒ Forced to select an element.

▶ No bound on competitive ratio for general distributions.
[Esfandiari, Hajiaghayi, Liaghat, Monemizadeh ’15]

X1 = 1 w.p. 1, and X2 =

1/ε w.p. ε

0 w.p. 1 − ε

E [ALG] = 1, E[min {X1, X2}] = 1 · ε + 0 · (1 − ε) = ε.
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I.I.D. Minimization Prophet Inequality

What about I.I.D.?

No hope for universal bound: [Lucier ’22]

D : F(x) = 1 − 1/x, with x ∈ [1,+∞) (Equal-revenue distribution).
E[X] = 1 +

∫ ∞
1 (1 − F(x)) dx = +∞, but

E[min{X1, X2}] = 1 +
∫ ∞

1 (1 − F(x))2 dx = 2 < +∞.
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Is Minimization Hopeless?

Idea
Look at ”fatness” of D’s tail. Captured by D’s Hazard Rate.

h(x) =
f (x)

1 − F(x)

(
also H(x) =

∫ x

0
h(u) du

)
Intuition: h(x) = Pr [X = x | X ≥ x] (for discrete distributions).

MHR Distribution
h is increasing.

▶ Important subclass, lots of past work.
Good guarantees in applications (e.g. auction revenue maximization).

Entire Distribution
D is entire if H has convergent series expansion H(x) =

∑∞
i=1 aixdi

(where 0 < d1 < d2 < . . . ) for every x in the support of D.

▶ E.g. uniform, exponential, Gaussian, Weibull, Rayleigh, beta
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Single Threshold

Single threshold algorithms suffice for maximization.

Theorem 1
For every entire distribution D, ∃ a single threshold algorithm that is
Θ

((
log n

)1/d1
)
-competitive, and this is the best possible.

▶ Cannot achieve a constant approximation, even for “easy”
distributions with very light tail, e.g. exponential.

▶ d1: Valuation of H, only important quantity!
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Where’s The Good Stuff?

Optimal policy: Set τi = E[OPTALGi+1,...,n], accept first Xi ≤ τi.

Theorem 2
For every distribution,
▶ If E[X] = +∞, the competitive ratio is infinite.
▶ If E[X] < +∞, there exists a constant c-competitive

minimization prophet inequality, and we characterize the
optimal c as the solution to a simple inequality on the quantiles
of D.

◦ c is distribution-dependent – can be arbitrarily large.

◦ First distribution-sensitive guarantees for prophet inequalities.

◦ New use of hazard rate in prophet inequalities as analysis tool.
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More Positive Results

Theorem 3
For every MHR distribution, there exists a 2-competitive
minimization prophet inequality, and this is the best-possible.

What does c look like?

Theorem 4
For every entire distribution,

c(d1) =
(1 + 1/d1)

1/d1

Γ (1 + 1/d1)
= Θ

(
e1/d1

)
.

▶ Γ: Gamma function. Γ(n + 1) = n!
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Open Problems

▶ Extend minimization PI to multiple selection.
▶ What can you get with 1 < k < n thresholds?
▶ Distribution-sensitive constants for maximization?
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Thank You!

Questions?
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Good Question!

Hidden under the rag:

c = inf

c′

∣∣∣∣∣∣∣∣∣∣∣∣ c′ −
F−1

(
λD

(
1+ 1

c′−1

)
n

)
F−1

(
1
n

) ≥ 0

 .

T = O

( log n
n

)1/d1
 .
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