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Secretary Problem

¢}4_ MATHEMATICAL GAMES
£ | v

L1

A fifth col
of

P n unknown values
Wy eeey Wy,

P Random order
P Step i:
1. Select w; and stop

2. lgnore w; and
continue

Pr[We select max; w;]?
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3/70



S, S
Sampling Phase Selection Phase

4/70



S, S
Sampling Phase Selection Phase

5/70



S, S
Sampling Phase Selection Phase

6/70



S, S
Sampling Phase Selection Phase

7/70



S, S
Sampling Phase Selection Phase

8/70



S, S
Sampling Phase Selection Phase

w.p. /2, wi €S,

1>1
w.p. Y2, whe Sl} = Pr{We selectmlaxwl] > 1/4
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S, S
Sampling Phase Selection Phase

w.p. /2, wi €S,

1>1
w.p. Y2, whe Sl} = Pr{We selectmlaxwl] > 1/4

P Optimal: fix arrival time ¢ of wj.
1
PrlALG + w}] = / Pr[Largest element before t € S| dt
2

1
1
:Z gdt:pln (2—9) = 1/e for p = 1/e.
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Given constraints F and (unknown) weights w on elements E,
select SC E

P online in uniformly random order,
P S e F (feasible),
P to maximize w(S) = > __sw,

Compare against OPT = maxpc 5 w(T)
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Given constraints F and (unknown) weights w on elements E,
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Given constraints F and (unknown) weights w on elements E,
select SC E

P online in uniformly random order,

P S e F (feasible),

P to maximize w(S) = > __sw,
Compare against OPT = maxp. 5 w(T)

Examples:
1. Matchings in G
2. Knapsacks

5. Matroids
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Matroid Secretary Conjecture [BIK '07]

Given matroid M = (E, %), observe weight w of
elements of E in a uniformly random order. Then, 3
¢ > 0 and algorithm A which selects S C F
immediately and irrevocably s.t.

1. Se7F

2. w(S) > ¢ maxpes w(T)
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Holds for many special classes.

Open for general matroids (e.g. binary matroids, gammoids, etc)!
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Matroid Secretary Conjecture [BIK '07]

Given matroid M = (E, %), observe weight w of
elements of E in a uniformly random order. Then, 3
¢ > 0 and algorithm A which selects S C F
immediately and irrevocably s.t.

1. Se7F
2. w(S) > ¢ maxpes w(T)
Holds for many special classes.

Open for general matroids (e.g. binary matroids, gammoids, etc)!

Strong Matroid Secretary Conjecture [BIK '07]

The Matroid Secretary Conjecture holds for ¢ = 1/e for all

matroids.
16/70



17/70



k-Uniform Matroid
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k-Uniform Matroid

Can get ( (1/ \/_)) -approx. to OPT [K '05]
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Laminar Matroid

<hs
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Fix a “sampling” parameter p.

Greedy Improving Algorithm (p)

P S0
P Fori<« 1to [pn]
P Skip i
P Fori<+ [pn]+1ton

P Observe w;
P IfS+ied andiec OPT,

> S—S+i
P Return S
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P 3/16000-approx. [IW '11]
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P 3/16000-approx. [IW '11]
» 1/(3ev/3) ~ 0.07-approx. [JSZ '13]
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» 3/16000-approx. [IW '11]
» 1/(3e/3) ~ 0.07-approx. [JSZ '13]
> 0.104-approx. [MTW '13]
P 0.192-approx. [STV '21]
> 0.210-approx. [HPZ '24]

> Greedy Improving Algorithm
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1. Optimal analysis of Greedy Improving algorithm for laminar
matroids:
1 —1In(2) ~ 0.306-approx.
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4. All via a unified /abeling scheme technique, which subsumes
past work.
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1. Optimal analysis of Greedy Improving algorithm for laminar
matroids:
1 —In(2) ~ 0.306-approx.
(Need different algorithms for strong MSC)

2. Improved algorithm for graphic matroids:
0.25 = 0.2504-approx.

3. Improved algorithm for rank-2 matroids (all laminar), which
beats Greedy Improving (0.3462-approx).

4. All via a unified /abeling scheme technique, which also
subsumes past work.
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P Want to calculate

Pr[3 space fore] =
Pr|SNLy|<ki—1 A [SNLy| <ky—1 A ..]
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P Want to calculate

Pr[3 space fore] =
Pr|SNLy|<ki—1 A [SNLy| <ky—1 A ..]

P Computing Pr[|SNL,| <k,—1]is easy but

are correlated events!
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P Previous approaches (IW'11, MTW'13, HPZ'24):
More and more clever ways to apply union bounds.
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P Previous approaches (IW'11, MTW'13, HPZ'24):
More and more clever ways to apply union bounds.

P> Our approach: tight correlation analysis via labeling scheme
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P Assume e arrives at t, ~ U[0, 1]
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P Assume e arrives at t, ~ U[0, 1]
P Nla,b): # of improving elements in [a, b)
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P Assume e arrives at t, ~ U[0, 1]
P Nla,b): # of improving elements in [a, b)
1. We show NJa,b) ~ Poi (r-In(b/a))
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P Assume e arrives at t, ~ U[0, 1]
P Nla,b): # of improving elements in [a, b)

1. We show NJa,b) ~ Poi (r-In(b/a))
P S(t): last improving element in [0, 1)

Prs) <al= [ Prlte<a]=(

ecOPT(E,)

A

> Yo = L,y = S(yx_1)- Also, z;, = —1In(y;).

Prlz), —x),_; <] =Prn(y,_,) — In(y,) <

e\
=Pr[S(yp_1) 2 ypae ] =1— (—yk - )
Yr—1

=1—e""
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Main ldea

At each improving element e assign a label {(e) equal to its
relative rank at the time of arrival.
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Main ldea

At each improving element e assign a label {(e) equal to its
relative rank at the time of arrival.

[ 1]
Sy

Sy Selection Phase
Sampling Phase
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Main ldea

At each improving element e assign a label {(e) equal to its
relative rank at the time of arrival.

o 0
Sy

Sy Selection Phase
Sampling Phase
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Main ldea

At each improving element e assign a label {(e) equal to its
relative rank at the time of arrival.

o 0 9
S,

Sy Selection Phase
Sampling Phase

52/70



Main ldea

At each improving element e assign a label {(e) equal to its
relative rank at the time of arrival.

Sy Sy
Sampling Phase Selection Phase
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Main ldea

At each improving element e assign a label {(e) equal to its
relative rank at the time of arrival.

Sy Sy
Sampling Phase Selection Phase
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Main ldea

At each improving element e assign a label £(e) equal to its
relative rank at the time of arrival.

06 9 ®© 060

51 Sy
Sampling Phase Selection Phase

e, is not improving, f(e;) =1, {l(eg) =1
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P Fix e € OPT. e is selected iff

ISNLy| <k —1 AN |SNLy| <ky—1 A ...
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P Fix e € OPT. e is selected iff
ISNLy| <k —1 AN |SNLy| <ky—1 A ...

Let y(®) denote the labels of improving elements before e
= suffices that, for every chain set L, > e with rank(L,) = k;

[{i €y N | u <k}l <h;—1.
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P Fix e € OPT. e is selected iff
ISNLy| <k —1 A |SNLy <ky—1 A

Let y(®) denote the labels of improving elements before e

= suffices that, for every chain set L, > e with rank(L,) = k;
{ie D ]u? <h}l<k—1
To see this, order ) from “inner” to “outer” chains.

< ks
S kZ L2

<k

Ly
O\OOQQOOQ OOoOOOOOO
O(Oroo 0 _© 000 OO C
00%6965% 0°%%
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VM, create £,; s.t. Ve € OPT

Prle € ALG] > Pr [y'¢) € £,] .
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VM, create £,; s.t. Ve € OPT
Prle € ALG] > Pr [y'¢) € £,] .

Examples:
P Uniform:

Ly ={zxlyer]*|ze(r]—1)"and |y| <r—1}.
P Laminar:

Ly =A{zlyer]*|z e ([r]—1)" and
Vi<e<r [{i€llyllly, <c}l <e—1}

P Graphic: ...even more complicated!
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= Pr [y € £,,] >2—2p+In(p), maximized for
p =12 = 1—1In(2) ~ 0.3068-approximation.
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= Pr [y € £,,] >2—2p+In(p), maximized for
p =12 = 1—1In(2) ~ 0.3068-approximation.

Tight for
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P> Labeling schemes also work for graphic matroids!

Clever scheme (thanks José) avoids cycles without dropping
too many edges

=—> 0.2504-approximation.

also = 0.2693-approximation for simple graphs.
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P> Labeling schemes also work for graphic matroids!

Clever scheme (thanks José) avoids cycles without dropping
too many edges

=—> 0.2504-approximation.

also = 0.2693-approximation for simple graphs.

P Can beat Greedy Improving for rank-2 matroids...yet 1/e is still
open...
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P Technique also subsumes prior work on special classes of
matroids.
P Hopefully can be used on

P> matroid classes for which the conjecture is still open (e.g.
gammoids), to give constant-factor algorithms.

P matroid classes for which a constant is known to give a
1/e-approximation.
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Questions?




