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Prophet Inequality

[Krengel, Sucheston and Garling ’77]

𝑋1, 𝑋2, … , 𝑋𝑛 ∼ (known) 𝒟1, 𝒟2, … , 𝒟𝑛
arrive in adversarial order.

▶ Design stopping time to maximize selected value.
▶ Compare against all-knowing prophet: 𝔼[max𝑖 𝑋𝑖].
▶ Competitive Ratio:

𝔼[𝐴𝐿𝐺]
𝔼[max𝑖 𝑋𝑖]

.
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𝑋1 = 2.34 𝑋2 = 3.12 𝑋3 = 3.20 𝑋4 = 0.87
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Prophet Inequality [Krengel, Sucheston and Garling ’77, ’78]
∃ stopping strategy that achieves 1/2 ⋅ 𝔼[max𝑖 𝑋𝑖],
and this is tight.

𝑋1 = 1 w.p. 1, and 𝑋2 = {
1/ε w.p. ε
0 w.p. 1 − ε

𝔼 [ALG] = 1 for all algorithms.

𝔼[max𝑖 𝑋𝑖] = 1
ε

⋅ ε+ 1 ⋅ (1 − ε) = 2 − ε.

▶ Idea: Set threshold 𝑇 , accept first 𝑋𝑖 ≥ 𝑇 .
▶ 𝑇 ∶ Pr[max𝑖 𝑋𝑖 ≥ 𝑇 ] = 1/2 works [Samuel-Cahn ’84].
▶ 𝑇 = 1/2 ⋅ 𝔼[max𝑖 𝑋𝑖] works

[Wittmann ’95, Kleinberg and Weinberg ’12].
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1. When can we get better guarantees?
Can 1/2 be improved?

2. What if 𝒟1 = 𝒟2 = ⋯ = 𝒟𝑛 = 𝒟?

3. Optimal (online) algorithm?
4. Worst-case 𝒟?
5. Is Min similar to Max?
6. What if 𝒟 does not depend on 𝑛?

IID Prophet Inequality [Hill-Kertz ’82,
Correa, Foncea, Hoeksma, Oosterwijk and Vredeveld ’21]]
For any 𝒟, ∃ threshold stopping strategy 𝜏1, 𝜏2, … , 𝜏𝑛 that
achieves 𝛽 ⋅ 𝔼[max𝑖 𝑋𝑖], where 𝛽 ≈ 0.745, and this is tight.

Worst-case 𝒟: High variance – depends on 𝑛
Most of the mass is at 0 – low probability of getting a high value.
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Optimal Threshold DP

If we reach 𝑋𝑛, take it. Focus on 𝑋𝑛−1, 𝑋𝑛.
What should 𝜏𝑛−1 be?

𝔼[OPTALG𝑛−1,𝑛] = (1 − 𝐹(𝜏𝑛−1)) 𝔼 [𝑋 | 𝑋 ≥ 𝜏𝑛−1] + 𝐹(𝜏𝑛−1) 𝔼[𝑋]
⟹ 𝜏𝑛−1 = 𝔼[𝑋].

In general, we have 𝜏𝑖 = 𝔼[OPTALG𝑖+1,…,𝑛].
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Beyond Constant Factors?

Idea
Look at ”fatness” of 𝒟’s tail. Captured by 𝒟’s Hazard Rate

ℎ(𝑥) = 𝑓(𝑥)
1 − 𝐹(𝑥).

Intuition: ℎ(𝑥) = Pr [𝑋 = 𝑥 | 𝑋 ≥ 𝑥] (for discrete distributions).
MHR Distribution
ℎ is increasing.

▶ Important subclass, lots of past work by economists.
Good guarantees in many applications (e.g. revenue
maximization in auctions).

IID Prophet Inequality with MHR Distribution
[Braun-Buttkus-Kesselheim ’21]
For any MHR 𝒟, ∃ threshold algorithm 𝐴𝐿𝐺 that achieves

𝔼[𝐴𝐿𝐺]
𝔼[max𝑖 𝑋𝑖] = 1 − o (1) .
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Minimization

1. No hope for non-IID:

𝑋1 = 1 w.p. 1, and 𝑋2 = {
1/ε w.p. ε
0 w.p. 1 − ε

𝔼 [ALG] = 1 for all algorithms, yet 𝔼 [min {𝑋1, 𝑋2}] = ε.

2. No hope for universal bound: [Lucier ’22]

𝒟 ∶ 𝐹(𝑥) = 1 − 1/𝑥, with 𝑥 ∈ [1, +∞) (Equal-revenue
distribution).
𝔼[𝑋] = 1 + ∫∞

1 (1 − 𝐹(𝑥)) 𝑑𝑥 = +∞, but

𝔼[min{𝑋1, 𝑋2}] = 1 + ∫∞
1 (1 − 𝐹(𝑥))2 𝑑𝑥 < +∞.

21 / 56



Minimization

1. No hope for non-IID:

𝑋1 = 1 w.p. 1, and 𝑋2 = {
1/ε w.p. ε
0 w.p. 1 − ε

𝔼 [ALG] = 1 for all algorithms, yet 𝔼 [min {𝑋1, 𝑋2}] = ε.

2. No hope for universal bound: [Lucier ’22]

𝒟 ∶ 𝐹(𝑥) = 1 − 1/𝑥, with 𝑥 ∈ [1, +∞) (Equal-revenue
distribution).
𝔼[𝑋] = 1 + ∫∞

1 (1 − 𝐹(𝑥)) 𝑑𝑥 = +∞, but

𝔼[min{𝑋1, 𝑋2}] = 1 + ∫∞
1 (1 − 𝐹(𝑥))2 𝑑𝑥 < +∞.

22 / 56



Minimization

1. No hope for non-IID:

𝑋1 = 1 w.p. 1, and 𝑋2 = {
1/ε w.p. ε
0 w.p. 1 − ε

𝔼 [ALG] = 1 for all algorithms, yet 𝔼 [min {𝑋1, 𝑋2}] = ε.

2. No hope for universal bound: [Lucier ’22]

𝒟 ∶ 𝐹(𝑥) = 1 − 1/𝑥, with 𝑥 ∈ [1, +∞) (Equal-revenue
distribution).
𝔼[𝑋] = 1 + ∫∞

1 (1 − 𝐹(𝑥)) 𝑑𝑥 = +∞, but

𝔼[min{𝑋1, 𝑋2}] = 1 + ∫∞
1 (1 − 𝐹(𝑥))2 𝑑𝑥 < +∞.

23 / 56



Towards a Unified Analysis

Fix 𝒟, take 𝑛 → ∞, and analyze the optimal DP.

Asymptotic Competitive Ratio (ACR)

𝜆𝑚𝑎𝑥 = lim
𝑛→∞

𝔼[𝐴𝐿𝐺(𝑛)]
𝔼[max𝑛

𝑖=1 𝑋𝑖]
𝜆𝑚𝑖𝑛 = lim

𝑛→∞
𝔼[𝐴𝐿𝐺(𝑛)]

𝔼[min𝑛
𝑖=1 𝑋𝑖]

▶ 𝑀𝑛 = max {𝑋1, … , 𝑋𝑛}
▶ 𝑚𝑛 = min {𝑋1, … , 𝑋𝑛}
▶ Distribution of 𝑀𝑛, 𝑚𝑛 as 𝑛 → ∞?
▶ lim𝑛→∞ 𝑀𝑛 = +∞, lim𝑛→∞ 𝑚𝑛 = 0 ⟹ Re-scaling
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Main Tool: Extreme Value Theory

Extreme Value Theorem [Fisher, Tippett ’28, Gnedenko ’43]
Assume there exist sequences 𝑎𝑛 > 0, 𝑏𝑛 ∈ ℝ such that

lim
𝑛→∞

𝐹𝑀𝑛
(𝑎𝑛𝑥 + 𝑏𝑛) = 𝐺+

𝛾 (𝑥).

Then,

𝐺+
𝛾 (𝑥) = {exp (−(1 + 𝛾𝑥)−1/𝛾) , if 𝛾 ≠ 0

exp (− exp (−𝑥)) , if 𝛾 = 0 ,

and we say that 𝒟 follows EVT.

▶
▶
▶
▶
▶ Can get similar result for discrete distributions.
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exp (− exp (−𝑥)) , if 𝛾 = 0 ,

and we say that 𝒟 follows EVT.
▶ 𝐺 : Extreme Value Distribution, 𝛾 : Extreme Value Index
▶ Three distinct 𝐺+

𝛾 ’s:
▶ 𝛾 > 0: Fréchet
▶ 𝛾 = 0: Gumbel
▶ 𝛾 < 0: Reverse Weibull

▶
▶
▶ Can get similar result for discrete distributions.
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▶ Central Limit Theorem analogue for Max.
▶ Can get similar result for Min, but 𝛾, 𝐺−

𝛾 changes.

▶ Can get similar result for discrete distributions.
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Fréchet, Gumbel and Rev. Weibull

▶ 𝛾 > 0: Fréchet

lim
𝑥→∞

1 − 𝐺+
𝛾 (𝑥) ∼ 1

(𝛾𝑥)−1/𝛾 .

Heavy tails, ∄ moments of order 1/𝛾 and above.
Examples: Cauchy, Pareto, Equal-Revenue, …

▶ 𝛾 = 0: Gumbel

lim
𝑥→∞

1 − 𝐺+
0 (𝑥) ∼ 𝑒−𝑥.

Light tail, exponential-like behaviour.
Examples: Gaussian, Exponential, Gamma, …

▶ 𝛾 < 0: Reverse Weibull
Necessarily bounded support, short tail.
Examples: Uniform, Beta, …
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𝐺+𝛾(𝑥) = {exp (−(1 + 𝛾𝑥)−1/𝛾) , if 𝛾 ≠ 0
exp (− exp (−𝑥)) , if 𝛾 = 0



Comparison with CLT

Central Limit Theorem
For a 𝒟 with mean 𝜇 and variance 𝜎2, let 𝑎𝑛 = √𝑛 and 𝑏𝑛 = 𝑛𝜇.
If 𝜇, 𝜎2 < +∞, then

lim
𝑛→∞

∑𝑛
𝑖=1 𝑋𝑖 − 𝑏𝑛

𝑎𝑛
= 𝑌 ∼ 𝒩 (0, 𝜎2) .

Extreme Value Theorem
For a 𝒟 with cdf 𝐹 , let 𝑏𝑛 = (1/(1 − 𝐹))← (𝑛), 𝑎𝑛 = 1/(𝑛𝑓(𝑏𝑛)).
If

lim
𝑛→∞

max {𝑋1, … , 𝑋𝑛} − 𝑏𝑛
𝑎𝑛

= 𝑌

exists, then 𝑌 ∼ 𝐺+
𝛾 (𝑥).
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IID PI via Extreme Value Theory

Theorem
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▶ Distribution-optimal closed form!
▶ Unified analysis of competitive ratio for both Max and Min.
▶ 𝒟 MHR ⟹ 𝐴𝐶𝑅𝑀𝑎𝑥 = 1 & 𝐴𝐶𝑅𝑀𝑖𝑛 ≤ 2
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Asymptotic Competitive Ratio

For 𝛾 → −∞, by Stirling’s approximation

(1 − 𝛾)−𝛾

Γ(1 − 𝛾) ≈ 𝑒−𝛾.
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Asymptotic Competitive Ratio

Figure: ACR(𝛾) for Max Figure: ACR(𝛾) for Min
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High-Level Approach
𝐹(𝑡) = Pr𝑋∼𝒟[𝑋 ≤ 𝑡], 𝐹 ←(𝑝) ∶ inverse of 𝐹 (“Quantile
function”).

Using EVT and heavy-machinery from theory of regularly-varying
functions:

Max

𝔼[𝐴𝐿𝐺(𝑛)] ≈ 𝐹 ← (1 − 1 − 𝛾
𝑛 )

𝔼 [ 𝑛max
𝑖=1

𝑋𝑖] ≈

Γ(1 − 𝛾) 𝐹 ← (1 − 1
𝑛)

𝐹 ← (1 − 𝑐
𝑛) ≈

𝑐−𝛾 𝐹 ← (1 − 1
𝑛)

Min

𝔼[𝐴𝐿𝐺(𝑛)] ≈ 𝐹 ← (1 − 𝛾
𝑛 )

𝔼 [
𝑛

min
𝑖=1

𝑋𝑖] ≈ Γ(1 − 𝛾) 𝐹 ← ( 1
𝑛)

𝐹 ← ( 𝑐
𝑛) ≈ 𝑐−𝛾 𝐹 ← ( 1

𝑛)
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Single-Threshold Algorithms?

Theorem
Assume there exist sequences 𝑎𝑛 > 0, 𝑏𝑛 ∈ ℝ such that

lim
𝑛→∞

𝐹𝑀𝑛
(𝑎𝑛𝑥 + 𝑏𝑛) = 𝐺+

𝛾 (𝑥)

for some 𝛾

lim
𝑛→∞

𝐹𝑚𝑛
(𝑎𝑛𝑥 + 𝑏𝑛) = 𝐺−

𝛾 (𝑥)

for some 𝛾

Then, the optimal single-threshold algorithm achieves a
competitive ratio, as 𝑛 → ∞, of
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competitive ratio, as 𝑛 → ∞, of

𝐴𝐶𝑅𝑀𝑎𝑥(𝑇) = min { − (−𝛾 − 𝑊−1 (−𝛾 𝑒−𝛾))1−𝛾

(1 − 𝛾)Γ(1 − 𝛾)𝑊−1 (−𝛾 𝑒−𝛾) ,

1 .

[Correa, Pizarro, Verdugo ’21]]
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1 .

[Correa, Pizarro, Verdugo ’21]]

𝐴𝐶𝑅𝑀𝑖𝑛(𝑇 ) = O ((log 𝑛)−𝛾)

[L. Mehta ’24]
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Asymptotic Competition Complexity

Asymptotic Competition Complexity (ACC)
For any 𝒟,

𝐴𝐶𝐶𝑀𝑎𝑥 = lim
𝑛→∞

inf {𝑐 ∣ 𝔼[𝐴𝐿𝐺(𝑐 𝑛)] ≥ 𝔼[ 𝑛max
𝑖=1

𝑋𝑖]}

𝐴𝐶𝐶𝑀𝑖𝑛 = lim
𝑛→∞

inf {𝑐 ∣ 𝔼[𝐴𝐿𝐺(𝑐 𝑛)] ≤ 𝔼[
𝑛

min
𝑖=1

𝑋𝑖]}

Theorem [L. ’24]
For every distribution following EVT,

𝐴𝐶𝐶𝑀𝑎𝑥(𝛾) = 𝐴𝐶𝐶𝑀𝑖𝑛(𝛾) = (𝐴𝐶𝑅(𝛾))
−1/𝛾

= (1−𝛾) (Γ(1 − 𝛾))1/𝛾 .

49 / 56



Asymptotic Competition Complexity

Asymptotic Competition Complexity (ACC)
For any 𝒟,

𝐴𝐶𝐶𝑀𝑎𝑥 = lim
𝑛→∞

inf {𝑐 ∣ 𝔼[𝐴𝐿𝐺(𝑐 𝑛)] ≥ 𝔼[ 𝑛max
𝑖=1

𝑋𝑖]}

𝐴𝐶𝐶𝑀𝑖𝑛 = lim
𝑛→∞

inf {𝑐 ∣ 𝔼[𝐴𝐿𝐺(𝑐 𝑛)] ≤ 𝔼[
𝑛

min
𝑖=1

𝑋𝑖]}

Theorem [L. ’24]
For every distribution following EVT,

𝐴𝐶𝐶𝑀𝑎𝑥(𝛾) = 𝐴𝐶𝐶𝑀𝑖𝑛(𝛾) = (𝐴𝐶𝑅(𝛾))
−1/𝛾

= (1−𝛾) (Γ(1 − 𝛾))1/𝛾 .

50 / 56



Asymptotic Competition Complexity

Asymptotic Competition Complexity (ACC)
For any 𝒟,

𝐴𝐶𝐶𝑀𝑎𝑥 = lim
𝑛→∞

inf {𝑐 ∣ 𝔼[𝐴𝐿𝐺(𝑐 𝑛)] ≥ 𝔼[ 𝑛max
𝑖=1

𝑋𝑖]}

𝐴𝐶𝐶𝑀𝑖𝑛 = lim
𝑛→∞

inf {𝑐 ∣ 𝔼[𝐴𝐿𝐺(𝑐 𝑛)] ≤ 𝔼[
𝑛

min
𝑖=1

𝑋𝑖]}

Theorem [L. ’24]
For every distribution following EVT,

𝐴𝐶𝐶𝑀𝑎𝑥(𝛾) = 𝐴𝐶𝐶𝑀𝑖𝑛(𝛾)

= (𝐴𝐶𝑅(𝛾))
−1/𝛾

= (1−𝛾) (Γ(1 − 𝛾))1/𝛾 .

51 / 56



Asymptotic Competition Complexity

Asymptotic Competition Complexity (ACC)
For any 𝒟,

𝐴𝐶𝐶𝑀𝑎𝑥 = lim
𝑛→∞

inf {𝑐 ∣ 𝔼[𝐴𝐿𝐺(𝑐 𝑛)] ≥ 𝔼[ 𝑛max
𝑖=1

𝑋𝑖]}

𝐴𝐶𝐶𝑀𝑖𝑛 = lim
𝑛→∞

inf {𝑐 ∣ 𝔼[𝐴𝐿𝐺(𝑐 𝑛)] ≤ 𝔼[
𝑛

min
𝑖=1

𝑋𝑖]}

Theorem [L. ’24]
For every distribution following EVT,

𝐴𝐶𝐶𝑀𝑎𝑥(𝛾) = 𝐴𝐶𝐶𝑀𝑖𝑛(𝛾) = (𝐴𝐶𝑅(𝛾))
−1/𝛾

= (1−𝛾) (Γ(1 − 𝛾))1/𝛾 .

52 / 56



Asymptotic Competition Complexity

Asymptotic Competition Complexity (ACC)
For any 𝒟,

𝐴𝐶𝐶𝑀𝑎𝑥 = lim
𝑛→∞

inf {𝑐 ∣ 𝔼[𝐴𝐿𝐺(𝑐 𝑛)] ≥ 𝔼[ 𝑛max
𝑖=1

𝑋𝑖]}

𝐴𝐶𝐶𝑀𝑖𝑛 = lim
𝑛→∞

inf {𝑐 ∣ 𝔼[𝐴𝐿𝐺(𝑐 𝑛)] ≤ 𝔼[
𝑛

min
𝑖=1

𝑋𝑖]}

Theorem [L. ’24]
For every distribution following EVT,

𝐴𝐶𝐶𝑀𝑎𝑥(𝛾) = 𝐴𝐶𝐶𝑀𝑖𝑛(𝛾) = (𝐴𝐶𝑅(𝛾))
−1/𝛾

= (1−𝛾) (Γ(1 − 𝛾))1/𝛾 .

53 / 56



Asymptotic Competition Complexity

▶ 𝐴𝐶𝐶 ≤ 𝑒 for all 𝒟 following EVT.
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Open Problems

▶ Extend Min-PI to multiple selection.
▶ Are there 𝒟𝑖 for which we can get constant approximation in

the non-IID setting?
▶ What can you get with 1 < 𝑘 < 𝑛 thresholds?
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Thank You!

Questions?
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