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Price : 5

(100) ﬁ‘@

How to set the price?
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Prophet Inequality

A)(:L,A)(27 cee 7X”I’L ~/ (knOWﬂ) Dl’ 92, ces 7D7’L
arrive in adversarial order.

P Design stopping time to maximize selected value.
P Compare against all-knowing prophet: [E[max; X,].

P Competitive Ratio:
E[ALG]

E[max; X;]’
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X, =2.34 X, =3.12 X, =3.20 X, =0.87
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Prophet Inequality
3 stopping strategy that achieves 1/2 - E[max; X],
and this is tight.

1
X;=1 wp. 1, and X, = fo wp- &
0 wp l—¢

E [ALG] = 1 for all algorithms.
Emax; X;]=1-6+1-(1—¢)=2—=¢.
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Prophet Inequality
3 stopping strategy that achieves 1/2 - E[max; X],
and this is tight.

1
X;=1 wp. 1, and X, = fo wp- &

0 wp l—¢
E [ALG] = 1 for all algorithms.

Emax; X;]=1-6+1-(1—¢)=2—=¢.
P Idea: Set threshold T, accept first X, >T.

» T :Pr[max; X; > T| = 1/2 works
P T =1/2- E[max; X,] works
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1. When can we get better guarantees?
Can 1/2 be improved?

2. What if D, = D, = =D, = D?

n
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. When can we get better guarantees?
Can 1/2 be improved?

2. What if D, = D, = =D, = D?

3. Optimal (online) algorithm?
4. Worst-case D7?
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When can we get better guarantees?
Can 1/2 be improved?

What if D, =Dy =-- =D, =D?
Optimal (online) algorithm?
Worst-case D?

Is MIN similar to MAX?

What if D does not depend on n?
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1. When can we get better guarantees?
Can 1/2 be improved?

What if D, =Dy =-- =D, =D?
Optimal (online) algorithm?
Worst-case D?

Is MIN similar to MAX?

What if D does not depend on n?

o R~ whN

[ID Prophet Inequality

For any 2, 3 threshold stopping strategy 7,7y, ..., 7,, that
achieves [ - E[max; X,|, where § ~ 0.745, and this is tight.

Worst-case D: High variance — depends on n
Most of the mass is at 0 — low probability of getting a high value.
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Optimal Threshold DP

X

n—1»“*n-

If we reach X, take it. Focus on X
What should 7,,_; be?
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Optimal Threshold DP

X

n—1»“*n-

If we reach X, take it. Focus on X
What should 7,,_; be?

F[OPTALG

=1 =F(r,))EX|X > 7, 4] + F(7,1) E[X]

nfl,n]

In general, we have 7; = E[OPTALG,
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Beyond Constant Factors?

ldea
Look at "fatness” of D's tail. Captured by D's Hazard Rate
f(x)
h(z) = ———.
@) =1"Fm

Intuition: h(x) = Pr[X = x| X > z] (for discrete distributions).
MHR Distribution
h is increasing.
P Important subclass, lots of past work by economists.
Good guarantees in many applications (e.g. revenue
maximization in auctions).

lID Prophet Inequality with MHR Distribution

For any MHR 2D, 3 threshold algorithm ALG that achieves

FI[ALG
ﬁﬁggﬁzl—ouy
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Minimization

1. No hope for non-lID:

18 M-
X;=1 wp. 1, and X, = fe wp. e
0 wp. l—g

E [ALG] = 1 for all algorithms, yet [E [min {X,, X,}] = &.
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Minimization

1. No hope for non-lID:

18 M-
X;=1 wp. 1, and X, = fo wp. 8
0 wp. l—g

E [ALG] = 1 for all algorithms, yet [E [min {X,, X,}] = &.

2. No hope for universal bound:

D:F(x)=1—1/z with x € [1,4+00) (Equal-revenue
distribution).
E[X]=1+ j;oo (1 — F(x))dx = 400, but

Elmin{X,, X,}] =1+ [~ (1 - F(2))" dz < +oo.
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Towards a Unified Analysis
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Towards a Unified Analysis

Fix D, take n — oo, and analyze the optimal DP.
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Towards a Unified Analysis

Fix D, take n — oo, and analyze the optimal DP.

Asymptotic Competitive Ratio (ACR)

A = lim

mazx A in — lim

E[ALG(n)] E[ALG(n)]

n—oo E[maxil; X;] n—oo Elmini; X;]
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Towards a Unified Analysis

Fix D, take n — oo, and analyze the optimal DP.

Asymptotic Competitive Ratio (ACR)

A = lim

mazx A in — lim

E[ALG(n)]

n—oo E[maxil; X;] n—oo Elmini; X;]

» M, =max{X,,..,X,}
» m, =min{X;,...,X,}
P Distribution of M,,, m, as n — 00?

E[ALG(n)]
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Towards a Unified Analysis

Fix D, take n — oo, and analyze the optimal DP.

Asymptotic Competitive Ratio (ACR)

g EAIGRL

maz — [El:max?zl Xz] n—00 [E[min?zl Xz]

» M, =max{X,,..,X,}
» m, =min{X;,...,X,}
P Distribution of M,,, m, as n — 00?
» lim, .. M, =+oc0, lim

nooo My =0 = Re-scaling

E[ALG(n)]
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Main Tool: Extreme Value Theory

Extreme Value Theorem
Assume there exist sequences a,, > 0,b,, € R such that

lim Fy, (a,z+b,) =G5 (z).

n—oo

Then,

Y

(z) = {exp (—(L+~y2)~), ify#0
exp (—exp (—x)), ify=0

and we say that 2 follows EVT.
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Main Tool: Extreme Value Theory

Extreme Value Theorem
Assume there exist sequences a,, > 0,b,, € R such that

lim Fy, (a,z+b,) =G5 (z).

n—oo

Then,
(z) = {exp (—(L+~y2)™), ify#0
exp (—exp (—z)), ify=0"

and we say that 2 follows EVT.
P G : Extreme Value Distribution, v : Extreme Value Index
P Three distinct G's:
» ~ > 0: Fréchet
» ~ =0: Gumbel
P ~ < 0: Reverse Weibull
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Main Tool: Extreme Value Theory

Extreme Value Theorem
Assume there exist sequences a,, > 0,b,, € R such that

lim Fy, (a,z+b,) =G5 (z).

n—oo

Then,

exp (—exp (—x)), ify=0

and we say that 2 follows EVT.

>
>

P Central Limit Theorem analogue for MAX.

P Can get similar result for MIN, but ~, G, changes.
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Main Tool: Extreme Value Theory

Extreme Value Theorem
Assume there exist sequences a,, > 0,b,, € R such that

lim Fy, (a,z+b,) =G5 (z).

n—oo
Then,
Gia)=4 P (=1 +a) ), o
exp (—exp (—x)), ify=0

and we say that 2 follows EVT.

>

>

>

>

P Can get similar result for discrete distributions.
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Fréchet, Gumbel and Rev. Weibull

ifvy#0
ifvy=0

gy = d P (~(L 4 y@) "),
P ~ > 0: Fréchet G5 (@) {exp<_eXp(_m)>,
lim 1 —GH(z) ~ _
e T e

Heavy tails, Z moments of order 1/~ and above.
Examples: Cauchy, Pareto, Equal-Revenue, ...

P v =0: Gumbel

lim 1 —G{(z) ~e ™.

Tr—00

Light tail, exponential-like behaviour.
Examples: Gaussian, Exponential, Gamma, ...

P ~ < 0: Reverse Weibull
Necessarily bounded support, short tail.
Examples: Uniform, Beta, ...
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Comparison with CLT

Central Limit Theorem
For a 2 with mean 1 and variance 02, let a,, = +/n and b,, = npu.
If u, 02 < 400, then

YoX, b
lim @:YNN(O,H).
n—oo a,n
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Comparison with CLT

Central Limit Theorem
For a 2 with mean 1 and variance 02, let a,, = +/n and b,, = npu.
If u, 02 < 400, then

YoX, b
lim @:YNN(O,H).
n—oo an

Extreme Value Theorem
For a D with cdf F, let b, = (1/(1—F))" (n), a,, = 1/(nf(b,)).

If
iy aX {X;,....X,,} =0,

n—00 a

exists, then Y ~ G (z).

=Y

n

35/56



[ID Pl via Extreme Value Theory

Theorem
Assume there exist sequences a,, > 0,b,, € R such that

lim Fy, (a,z +b,) =G5 () lim F, (a,z+b,) =G, ()

n—,oo R n—oo

for some for some
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[ID Pl via Extreme Value Theory

Theorem
Assume there exist sequences a,, > 0,b,, € R such that

for some ~y for some -y

Then, the optimal DP achieves a competitive ratio, as n — oo, of

AC Ry =min{ 77211
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[ID Pl via Extreme Value Theory

Theorem
Assume there exist sequences a,, > 0,b,, € R such that

for some ~y for some -y

Then, the optimal DP achieves a competitive ratio, as n — oo, of

AC R =min{ E 570 AC Ry = max { T
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[ID Pl via Extreme Value Theory

Theorem ‘F(x) = (z—1)! ‘

Assume there exist sequences a,, > 0,b,, € R such that

lim Fy (0,7 +b,) = G} (2) lim F,, (a,2+b,) =G, (x)
for some ~ for some ~

Then, the optimal DP achieves a competitive ratio, as n — oo, of

AC Ry =min{ 70 ACRy = max { T

P Distribution-optimal closed form!
P Unified analysis of competitive ratio for both MAX and MIN.
» DMHR = ACR,,.,=1 & ACR,;, <2
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Asymptotic Competitive Ratio

-1
For v — —o0, by Stirling’s approximation

A=9"7 _ —
I'(1—7) '
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Asymptotic Competitive Ratio

ACR(y) ACR(y)®
2 2
1 0 1 o2 -2 1 0 1 2
' 7
Figure: ACR(7y) for Max Figure: ACR(7y) for MIN
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High-Level Approach

F(t) =Pry_p[X <t], F“(p):inverse of F' (“Quantile
function™).

Using EVT and heavy-machinery from theory of regularly-varying
functions:

MAX MIN
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High-Level Approach

F(t) =Pry_p[X <t], F“(p):inverse of F' (“Quantile
function™).

Using EVT and heavy-machinery from theory of regularly-varying
functions:

MAX MIN

E[ALG(n)] ~ (1 . ;7> E[ALG(n)] ~ F© (i”)
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High-Level Approach

F(t) =Pry_p[X <t], F“(p):inverse of F' (“Quantile
function™).

Using EVT and heavy-machinery from theory of regularly-varying
functions:

MAx MIN
E[ALG(n)] ~ (1 . ;7> E[ALG(n)] ~ F© (1 ;7>
£ | X | ~ £ [min X,| ~T(1-9) F (1)
0 1)
]r@:): m—l)!‘
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High-Level Approach

F(t) =Pry_p[X <t], F“(p):inverse of F' (“Quantile
function™).

Using EVT and heavy-machinery from theory of regularly-varying
functions:

Max Min
E[ALG(n)] ~ (1 . ;7> E[ALG(n)] ~ F© (1 ;7>
: [ng ~ ) £ [min X,| ~T(1-9) F (1)
(l—x) F©{1—-=
Y n Fe <E> ~ e FE <1>
F(-5)- e
¢ (1_:&) T(z) = {z—1)!]
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Single-Threshold Algorithms?

Theorem
Assume there exist sequences a,, > 0,b,, € R such that

lim Fy, (a,r+b,) = G7(z) lim F,, (a,r+b,) =G ()

n—oo R n—oo n

for some ~y for some ~y
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Single-Threshold Algorithms?

Theorem
Assume there exist sequences a,, > 0,0,, € R such that

lim Fy, (a,z+b,) =G5 () lim F, (a,z+b,) =G, ()

n—,oo n—,oo v

for some for some

Then, the optimal single-threshold algorithm achieves a
competitive ratio, as n — oo, of

(=W (ye )T
(1= —y)W_y (—ye )’

ACR N o (T) = min{

1.
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Single-Threshold Algorithms?

T(@) = (z— 1)
Theorem
Assume there exist sequences a,, > 0,0,, € R such that
for some for some

Then, the optimal single-threshold algorithm achieves a
competitive ratio, as n — oo, of

=W (ye )T -
ACRMG“T):m‘“{ufa,’)yruf—ly)v;f(—ﬂje 7y’ ACRMm(T) =0 ((IOgn) 7)

1.
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Asymptotic Competition Complexity
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Asymptotic Competition Complexity

Asymptotic Competition Complexity (ACC)
For any D,

ACCy e = lim inf{c
n—oo

EALG(en)] > Elmhx X, |

ACCYyy, = lim inf{c
n—oo

FALG(en)] < Elmin X, |
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Asymptotic Competition Complexity

Asymptotic Competition Complexity (ACC)
For any D,

ACCy e = lim inf{c
n—oo

EALG(en)] > Elmhx X, |

=1

ACCYyy, = lim inf{c
n—oo

FALG(en)] < Elmin X, |

Theorem
For every distribution following EVT,

ACCMax (7) = ACCMZTL (’7)
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Asymptotic Competition Complexity

Asymptotic Competition Complexity (ACC)
For any D,

ACCy e = lim inf{c
n—oo

EALG(en)] > Elmhx X, |

=1

ACCYyy, = lim inf{c
n—oo

FALG(en)] < Elmin X, |

Theorem
For every distribution following EVT,

_1/’Y

ACCy145(7) = ACCyp,(7) = (ACR())
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Asymptotic Competition Complexity

Asymptotic Competition Complexity (ACC)
For any D,

ACCy e = lim inf{c
n—oo

EALG(en)] > Elmhx X, |

ACCYyy, = lim inf{c
n—oo

FALG(en)] < Elmin X, |

Theorem
For every distribution following EVT,

_1/,Y 1
ACCy14s(7) = ACCy,(7) = (ACR(y)) = (1=9) (D(1 =)
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Asymptotic Competition Complexity

ACC(v)

3

P ACC < e for all D following EVT.
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Open Problems

P Extend Min-Pl to multiple selection.

P Are there D, for which we can get constant approximation in
the non-lID setting?

P What can you get with 1 < k < n thresholds?
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Thank You!

Questions?

!

i)
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