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KILOVOLT 
MAGIC 

Sorensen is a maker of power supplies and 
doesn't make any of the "end-use" equip­
ment mentioned below. Yet, some of these 
applications of Sorensen equipment by our 
customers are so novel that they may be of 
interest to you. Maybe they'll spark an idea: 

Open Sesame. Selection of sesame seeds 
for use in the manufacture of halvah-a fa­
vorite confection of New York's lower East 
Side - was the job of kilovolts from one 
Sorensen Series 200 supply. Same principle 
can purify other grains and cereals, tobacco, 
and low-grade ores. 

Gold From Air. Gold spun off into thin air 
from a grinding or buffing wheel can quickly 
cause cash to vanish. Ditto with platinum or 
other precious metals. Clever Sorensen cus­
tomers are putting this pay dirt back into 
the pay roll with an electrostatic recovery 
system-powered, of course, with a Sorensen 
h-v supply. 

Ignition damper. Everybody's heard about 
the high-voltage spark that sets off an ex­
plosion. A new h-v system prevents explo­
sions. High-voltage-from a Sorensen 9000 
Series -precipitates a sample of potentially 
explosive dusts; an alarm is given long be­
fore the concentration becomes dangerous. 

Vanishing Volt.Amps. Dielectric testing 
with a-c is more or less standard. (Sorensen 
offers a complete line of h-v a-c testers, con­
forming to ASTM standards.) However, 
where the test load has high capacitance, d-c 
testing can often effect substantial savings. 
In a typical problem, a 250-watt, d-c tester 
replaced a 25 kva a-c tester with equal re­
sults, one-fourth the cost, and a 100: 1 reduc­
tion in light bills. 

High-voltage or low, you'll find that Soren­
sen has the answer to your controlled power 
problems. In addition to high-voltage equip­
ment, the Sorensen line includes: regulated 
and unregulated d-c supplies, a-c line-voltage 
regulators, frequency changers, inverters, 
and converters. Contact your Sorensen rep­
resentative, or write: Sorensen & Company, 
Richards Ave., South Norwalk, Conn. 9.64 

CONTROLLED 

S� POWER 

PRODUCTS 

... the widest line lets you make the wisest choice 

ISO. 

MATHEMATICAL GAMES 
A fifth collection 

of "brain-teasers" 

by Martin Gardner 

E
very eight months or so this de­

partment presents an assortment 
of short problems drawn from 

various mathematical fields. This is the 
fifth such collection. The answers to the 
problems will be given here next month. 
I welcome letters from readers who find 
fault with an answer, solve a problem 
more elegantly, or generalize a problem 
in some interesting way. In the past I 
have tried to avoid puzzles that play 
verbal pranks on the reader, so I think 
it only fair to say that several of this 
month's "brain-teasers" are touched with 
whimsy. They must be read with care; 
otherwise you may find the road to a 
solution blocked by an unwarranted as­
sumption. 

1. 

Mel Stover of Winnipeg was the first 
to send this amusing problem-amusing 
because of the ease with which even the 
best of geometers may fail to approach 
it properly. Given a triangle with one 
obtuse angle, is it possible to cut the 
'triangle into smaller triangles, all of 
them acute? (An acute triangle is a 
triangle with three acute angles. A right 
angle is of course neither acute nor ob­
tuse.) If this cannot be done, give a 
proof of impossibility. If it can 'be done, 
what is the smallest number of acute 
triangles into which any obtuse triangle 
can be dissected? 

The illustration at right shows a typi­
cal attempt that leads nowhere. The tri­
angle has been divided into three acute 
triangles, but the fourth is obtuse, so 
nothing has been gained by the pre­
ceding cuts. 

This delightful problem led me to ask 
myself: "What is the smallest number of 
acute triangles into which a square can 
be dissected?" For days I was convinced 
that nine was the answer; then suddenly 
I saw how to reduce it to eight. I won­
der how many readers can discover an 

eight-triangle solution, or perhaps an 
even better one. I am unable to prove 
that eight is the minimum, though I 
strongly suspect that it is. 

2. 

In H. G. Wells's novel The First Men 
in the Moon our natural satellite is found 
to be inhabited by intelligent insect 
creatures who live in caverns below the 
surface. These creatures, let us assume, 
have a unit of distance that we shall call 
a "lunar." It was adopted because the 
moon's surface area, if expressed in 
square lunars, exactly equals the moon's 
volume in cubic lunars. The moon's di­
ameter is 2,160. miles. How many miles 
long is a lunar? 

3. 
In 1958 John H. Fox, Jr., of the Min­

neapolis-Honeywell Regulator Co., and 
L. Gerald Mamie of the Massachusetts 
Institute of Technology devised an un­
usual betting game which they call Goo­
gol. It is played as follows: Ask someone 
to take as many slips of paper as he 
pleases, and on each slip write a different 
positive number. The numbers may 
range from small fractions of one to a 
number the size of a "googol" (1 fol­
lowed by a hundred zeros) or even 
larger. These slips are turned face-down 
and shuffled over the top of a table. One 
at a time you turn the slips face-up. The 
aim is to stop turning when you come to 
the number that you guess to be the 
largest of the series, You cannot go back 
and pick a previously turned slip. If 
you turn over all the slips, then of course 
you must pick the last one turned. 

Most people will suppose the odds 

Can this triangle be cut into acute ones? 
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Secretary Problem

▶ 𝑛 unknown values
𝑤1, … , 𝑤𝑛

▶ Random order
▶ Step 𝑖:

1. Select 𝑤𝑖 and stop
2. Ignore 𝑤𝑖 and

continue

Pr[We select max𝑖 𝑤𝑖]?



Secretary Problem

⋯

𝑆1
Sampling Phase

⋯

𝑆2
Selection Phase

w.p. 1/2, 𝑤∗
1 ∈ 𝑆2

w.p. 1/2, 𝑤∗
2 ∈ 𝑆1

} ⟹ 𝑃𝑟[We select max
𝑖

𝑤𝑖] ≥ 1/4

▶ Optimal: fix arrival time 𝑡 of 𝑤∗
1

𝑃𝑟[𝐴𝐿𝐺 ← 𝑤∗
1] = ∫

1

𝑝
Pr [Largest element in 𝐸𝑡 ∈ 𝑆1] 𝑑𝑡

= ∫
1

𝑝

𝑝
𝑡 𝑑𝑡 = 𝑝 ln (1

𝑝) = 1/𝑒 for 𝑝 = 1/𝑒
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Generalization

Matroid Secretary Problem
For a matroid 𝑀 = (𝐸, ℐ) and (unknown) weights 𝑤 ∶ 𝐸 → ℝ,
select 𝑆 ⊆ 𝐸

▶ online in uniformly random order,
▶ 𝑆 ∈ ℐ (independent),
▶ to maximize 𝑤(𝑆) = ∑𝑒∈𝑆 𝑤𝑒

Compare against 𝑂𝑃𝑇 = max𝑇 ∈ℐ 𝑤(𝑇 )



Matroid Secretary Conjecture

Matroid Secretary Conjecture
[Babaioff, Immorlica, Kleinberg ’07]
∃𝑐 > 0 s.t. ∀ matroid 𝑀 and weights 𝑤 ∶ 𝐸 → ℝ,
∃ algorithm 𝒜𝑀 for MSP s.t.

𝔼 [𝑤 (𝒜𝑀)] ≥ 𝑐 ⋅ 𝑂𝑃𝑇𝑀

Strong Matroid Secretary Conjecture
The Matroid Secretary Conjecture holds for 𝑐 = 1/𝑒 for all
matroids
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State of the Art

▶ Transversal Matroids: 1
𝑒 -approx.

[Kesselheim, Radke, Tönnis, Vö ’13]
▶ Laminar Matroids: 1

4.75 -approx.
[Huang, Parsaeian, Zhu 24’]

▶ Graphic Matroids: 1
4 -approx.

[Soto, Turkieltaub, Verdugo ’18]
▶ Co-graphic Matroids: 1

3𝑒 -approx.
[Soto ’13]

▶ Regular Matroids: 1
9𝑒 -approx.

[Dinitz, Kortsarz ’14]
▶ General Matroids: Ω ( 1

log log 𝑟)-approx.
[Lachish ’14]

▶ Binary Matroids, Gammoids: Ω (1) is open!



What We Study

Laminar Matroid

Graphic Matroid



Algorithm: Greedy Improving

Fix a “sampling” parameter 𝑝.

Greedy Improving Algorithm (𝑝)
▶ 𝑆 ← ∅
▶ For 𝑖 ← 1 to ⌈𝑝 𝑛⌉

▶ Skip 𝑖
▶ For 𝑖 ← ⌈𝑝 𝑛⌉ + 1 to 𝑛

▶ Observe 𝑤𝑖▶ If 𝑆 + 𝑖 ∈ ℐ and 𝑖 ∈ 𝑂𝑃𝑇≤𝑖
▶ 𝑆 ← 𝑆 + 𝑖

▶ Return 𝑆



Past Work: Laminar Matroids

▶ 3/16000-approx.
[Im, Wang ’11]

▶ 0.07-approx.
[Jaillet, Soto, Zenklusen ’13]

▶ 0.104-approx.
[Ma, Tang, Wang ’13]

▶ 0.192-approx.
[Soto, Turkieltaub, Verdugo ’18]

▶ 0.210-approx.
[Huang, Parsaeian, Zhu ’24]



Past Work: Laminar Matroids

▶ 3/16000-approx.
[Im, Wang ’11]

▶ 0.07-approx.
[Jaillet, Soto, Zenklusen ’13]

▶ 0.104-approx.
[Ma, Tang, Wang ’13]

▶ 0.192-approx.
[Soto, Turkieltaub, Verdugo ’18]

▶ 0.210-approx.
[Huang, Parsaeian, Zhu ’24]

▶ Greedy Improving Algorithm



Our Contributions

1. Optimal analysis of Greedy Improving algorithm for laminar
matroids:
1 − ln(2) ≈ 0.306-approx.

(Need different algorithms for strong MSC)
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Key Issue

▶ Want to calculate

Pr [ ∃ space for 𝑒 ] =
Pr [ |𝑆 ∩ 𝐿1| ≤ 𝑘1 − 1 ∧ |𝑆 ∩ 𝐿2| ≤ 𝑘2 − 1 ∧ …]

▶ Computing Pr [ |𝑆 ∩ 𝐿𝑖| ≤ 𝑘𝑖 − 1 ] is easy but

|𝑆 ∩ 𝐿𝑖| ≤ 𝑘𝑖 − 1 and |𝑆 ∩ 𝐿𝑗| ≤ 𝑘𝑗 − 1

are correlated events
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What Does an Optimal Analysis Look Like?

▶ Assume 𝑒 arrives at 𝑡𝑒 ∼ 𝑈[0, 1]

▶ 𝑁[𝑎, 𝑏): # of improving elements in [𝑎, 𝑏)
We show 𝑁[𝑎, 𝑏) ∼ 𝑃𝑜𝑖 (𝑟 ⋅ ln(𝑏/𝑎))

▶ 𝑆(𝑡): last improving element in [0, 𝑡)

Pr[𝑆(𝑏) ≤ 𝑥] = ∏
𝑒∈𝑂𝑃𝑇 (𝐸𝑏)

Pr[𝑡𝑒 ≤ 𝑥] = (𝑥
𝑏 )

𝑟

▶ 𝑦0 = 1, 𝑦𝑘 = 𝑆(𝑦𝑘−1). Also, 𝑥𝑘 ≜ − ln(𝑦𝑘).

Pr[𝑥𝑘 − 𝑥𝑘−1 ≤ 𝑥] = Pr [ln(𝑦𝑘−1) − ln(𝑦𝑘) ≤ 𝑥]

= Pr [𝑆(𝑦𝑘−1) ≥ 𝑦𝑘−1𝑒−𝑥] = 1 − (𝑦𝑘−1𝑒−𝑥

𝑦𝑘−1
)

𝑟

= 1 − 𝑒−𝑥𝑟
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Labeling Scheme
▶ Fix 𝑒 ∈ 𝑂𝑃𝑇 . 𝑒 is selected iff

|𝑆 ∩ 𝐿1| ≤ 𝑘1 − 1 ∧ |𝑆 ∩ 𝐿2| ≤ 𝑘2 − 1 ∧ …

▶ Set aside a special label for 𝑒 ⟹ ℓ(𝑒) = 1
Main Idea
Let 𝑒 ∈ 𝐿1 ⊆ 𝐿2 ⊆ … ⊆ 𝐿𝑚
At each improving element 𝑒′, assign a label ℓ(𝑒′):

1. 𝑒′ ∈ 𝐿1 ⟹ ℓ(𝑒′) = 𝑘1
2. 𝑒′ ∈ 𝐿2 ∖ 𝐿1 ⟹ ℓ(𝑒′) = 𝑘2
3. 𝑒′ ∈ 𝐿3 ∖ 𝐿2 ⟹ ℓ(𝑒′) = 𝑘3

⋮
⟹ 𝑧𝑒 = ℓ(𝑒1) ⋅ ℓ(𝑒2) ⋅ … is the improving word of 𝑒



Labeling Scheme
▶ Fix 𝑒 ∈ 𝑂𝑃𝑇 . 𝑒 is selected iff

|𝑆 ∩ 𝐿1| ≤ 𝑘1 − 1 ∧ |𝑆 ∩ 𝐿2| ≤ 𝑘2 − 1 ∧ …

▶ Set aside a special label for 𝑒 ⟹ ℓ(𝑒) = 1

Main Idea
Let 𝑒 ∈ 𝐿1 ⊆ 𝐿2 ⊆ … ⊆ 𝐿𝑚
At each improving element 𝑒′, assign a label ℓ(𝑒′):

1. 𝑒′ ∈ 𝐿1 ⟹ ℓ(𝑒′) = 𝑘1
2. 𝑒′ ∈ 𝐿2 ∖ 𝐿1 ⟹ ℓ(𝑒′) = 𝑘2
3. 𝑒′ ∈ 𝐿3 ∖ 𝐿2 ⟹ ℓ(𝑒′) = 𝑘3

⋮
⟹ 𝑧𝑒 = ℓ(𝑒1) ⋅ ℓ(𝑒2) ⋅ … is the improving word of 𝑒



Labeling Scheme
▶ Fix 𝑒 ∈ 𝑂𝑃𝑇 . 𝑒 is selected iff

|𝑆 ∩ 𝐿1| ≤ 𝑘1 − 1 ∧ |𝑆 ∩ 𝐿2| ≤ 𝑘2 − 1 ∧ …

▶ Set aside a special label for 𝑒 ⟹ ℓ(𝑒) = 1
Main Idea
Let 𝑒 ∈ 𝐿1 ⊆ 𝐿2 ⊆ … ⊆ 𝐿𝑚
At each improving element 𝑒′, assign a label ℓ(𝑒′):

1. 𝑒′ ∈ 𝐿1 ⟹ ℓ(𝑒′) = 𝑘1
2. 𝑒′ ∈ 𝐿2 ∖ 𝐿1 ⟹ ℓ(𝑒′) = 𝑘2
3. 𝑒′ ∈ 𝐿3 ∖ 𝐿2 ⟹ ℓ(𝑒′) = 𝑘3

⋮
⟹ 𝑧𝑒 = ℓ(𝑒1) ⋅ ℓ(𝑒2) ⋅ … is the improving word of 𝑒



Labeling Scheme

Main Idea
Let 𝑒 ∈ 𝐿1 ⊆ 𝐿2 ⊆ … ⊆ 𝐿𝑚
At each improving element 𝑒′, assign a label ℓ(𝑒′):

1. 𝑒′ ∈ 𝐿1 ⟹ ℓ(𝑒′) = 𝑘1

2. 𝑒′ ∈ 𝐿2 ∖ 𝐿1 ⟹ ℓ(𝑒′) = 𝑘2
3. 𝑒′ ∈ 𝐿3 ∖ 𝐿2 ⟹ ℓ(𝑒′) = 𝑘3

⋮
⟹ 𝑧𝑒 = ℓ(𝑒1) ⋅ ℓ(𝑒2) ⋅ … is the improving word of 𝑒



Labeling Scheme

Main Idea
Let 𝑒 ∈ 𝐿1 ⊆ 𝐿2 ⊆ … ⊆ 𝐿𝑚
At each improving element 𝑒′, assign a label ℓ(𝑒′):

1. 𝑒′ ∈ 𝐿1 ⟹ ℓ(𝑒′) = 𝑘1
2. 𝑒′ ∈ 𝐿2 ∖ 𝐿1 ⟹ ℓ(𝑒′) = 𝑘2

3. 𝑒′ ∈ 𝐿3 ∖ 𝐿2 ⟹ ℓ(𝑒′) = 𝑘3
⋮

⟹ 𝑧𝑒 = ℓ(𝑒1) ⋅ ℓ(𝑒2) ⋅ … is the improving word of 𝑒



Labeling Scheme

Main Idea
Let 𝑒 ∈ 𝐿1 ⊆ 𝐿2 ⊆ … ⊆ 𝐿𝑚
At each improving element 𝑒′, assign a label ℓ(𝑒′):

1. 𝑒′ ∈ 𝐿1 ⟹ ℓ(𝑒′) = 𝑘1
2. 𝑒′ ∈ 𝐿2 ∖ 𝐿1 ⟹ ℓ(𝑒′) = 𝑘2
3. 𝑒′ ∈ 𝐿3 ∖ 𝐿2 ⟹ ℓ(𝑒′) = 𝑘3

⋮
⟹ 𝑧𝑒 = ℓ(𝑒1) ⋅ ℓ(𝑒2) ⋅ … is the improving word of 𝑒



Improving Word

𝑧𝑒 = ℓ(𝑒1) ⋅ ℓ(𝑒2) ⋅ … is the improving word of 𝑒



Improving Word
In the worst case,

Let 𝑧𝑒 = 𝑦𝑒1𝑥, i.e. 𝑦𝑒 denotes the labels of improving elements
before 𝑒. For 𝑒 to be selected, we want

▶ |{𝑖 | 𝑦𝑒
𝑖 ≤ 1}| ≤ 0

▶ |{𝑖 | 𝑦𝑒
𝑖 ≤ 2}| ≤ 1

▶ |{𝑖 | 𝑦𝑒
𝑖 ≤ 3}| ≤ 2

⟹ We want ∀𝑗 ∈ [𝑟],
|{𝑖 | 𝑦𝑒

𝑖 ≤ 𝑗}| ≤ 𝑗 − 1
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Language of a Matroid

∀𝑀 , create ℒ𝑀 s.t. ∀𝑒 ∈ 𝑂𝑃 𝑇

Pr[𝑒 ∈ 𝐴𝐿𝐺] ≥ Pr [𝑦𝑒 ∈ ℒ𝑀 ]

Examples:
▶ Uniform:

ℒ𝑀 = {𝑦1𝑥 ∈ [𝑟]∗ | 𝑥 ∈ ([𝑟] − 1)∗ and |𝑦| ≤ 𝑟 − 1}

▶ Laminar:

ℒ𝑀 = {𝑦1𝑥 ∈ [𝑟]∗ | 𝑥 ∈ ([𝑟] − 1)∗ and
∀1 ≤ 𝑗 ≤ 𝑟, |{𝑖 | 𝑦𝑖 ≤ 𝑗}| ≤ 𝑗 − 1}

▶ Graphic: ...even more complicated!
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Result for Laminar Matroids

1. Labeling scheme is independent of arrival order ⟹
Conditioned on |𝑧𝑒| = 𝑘, 𝑧 is a uniformly random word from
[𝑟]𝑘

2. For 𝑧𝑒 = 𝑦𝑒1𝑥, conditioned on |𝑦𝑒| = 𝑚 ≤ 𝑟, (1)+ induction
on 𝑚 ⟹

Pr [
𝑟

⋀
𝑗=1

|{𝑖 | 𝑦𝑒
𝑖 ≤ 𝑗}| ≤ 𝑗 − 1] = 1 − 𝑚

𝑟

3. (1) + (2)+ the number of improving elements (i.e. |𝑧𝑒|)
follows a Poisson distribution ⟹

Pr [𝑦𝑒 ∈ ℒ𝑀 ] ≥ 1 − ln(2) ≈ 0.3068
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Labeling Scheme for Graphic Matroids

High Level Idea
Past algorithms:
Design orientation of 𝐸 s.t. ∀ improving 𝑒 = (𝑢, 𝑣), take 𝑒 if
deg−(𝑢) = deg−(𝑣) = 0



Labeling Scheme for Graphic Matroids

High Level Idea
Wrong Approach:
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deg−(𝑣) = 0



Labeling Scheme for Graphic Matroids

High Level Idea
Wrong Approach:
Design orientation of 𝐸 s.t. ∀ improving 𝑒 = (𝑢, 𝑣), take 𝑒 if
deg−(𝑣) = 0



Labeling Scheme for Graphic Matroids

High Level Idea
Wrong Approach:
Design orientation of 𝐸 s.t. ∀ improving 𝑒 = (𝑢, 𝑣), take 𝑒 if
deg−(𝑣) = 0



Labeling Scheme for Graphic Matroids

High Level Idea
Wrong Approach:
Design orientation of 𝐸 s.t. ∀ improving 𝑒 = (𝑢, 𝑣), take 𝑒 if
deg−(𝑣) = 0



Labeling Scheme for Graphic Matroids

High Level Idea
Wrong Approach:
Design orientation of 𝐸 s.t. ∀ improving 𝑒 = (𝑢, 𝑣), take 𝑒 if
deg−(𝑣) = 0



Labeling Scheme for Graphic Matroids
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Wrong Approach:
Design orientation of 𝐸 s.t. ∀ improving 𝑒 = (𝑢, 𝑣), take 𝑒 if
deg−(𝑣) = 0



Labeling Scheme for Graphic Matroids

High Level Idea
Correct Approach:
Design orientation of 𝐸 s.t. ∀ improving 𝑒 = (𝑢, 𝑣), take 𝑒 if
deg−(𝑣) = 0 and 𝑒 is not second in a path of seen edges

⟹ 0.2504-approx.
⟹ 0.2693-approx. for simple graphs



Conclusion

▶ Technique also subsumes prior work on special classes of
matroids

▶ Hopefully can be used on
▶ matroid classes for which the conjecture is still open (e.g.

gammoids), to give constant-factor algorithms
▶ matroid classes for which a constant is known to give a

1/𝑒-approximation



Thanks!

Questions?


