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Prophet Inequality

[Krengel, Sucheston and Garling ’77]

𝑋1, 𝑋2, … , 𝑋𝑛 ∼ (known) 𝒟1, 𝒟2, … , 𝒟𝑛
arrive in adversarial order.

▶ Design stopping time to maximize selected value.
▶ Compare against all-knowing prophet: 𝔼[max𝑖 𝑋𝑖].
▶ Competitive Ratio:

𝔼[𝐴𝐿𝐺]
𝔼[max𝑖 𝑋𝑖]

.
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𝑋1 = 3.94 𝑋2 = 2.65 𝑋3 = 3.40 𝑋4 = 1.23
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Prophet Inequality [Krengel, Sucheston and Garling ’77, ’78]
∃ stopping strategy that achieves 1/2 ⋅ 𝔼[max𝑖 𝑋𝑖],
and this is tight.

Optimal strategy is a single-threshold algorithm 𝑇

Applications:
▶ Auction Design
▶ Revenue Maximization
▶ Matching Markets
▶ Resource Allocation
▶ Portfolio Selection
▶ Supply Chain Management
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Single Buyer Revenue Maximization

▶ One buyer, 𝑛 items
▶ 𝑣 ∶ 2[𝑛] → ℝ≥0 ∼ (known) 𝐷

▶ Menu: 𝑀 = {(Γ𝑘, 𝑝𝑘)}
▶ Goal: max𝑣∼𝐷 𝔼[𝑝𝑘∗ ], where

𝑘∗ = arg max
𝑘

𝔼
𝑆∼Γ𝑘

[𝑣(𝑆) − 𝑝𝑘]

▶ Valuations:
▶ Additive: 𝑣(𝑆) = ∑𝑖∈𝑆 𝑣(𝑖)
▶ Unit-Demand: 𝑣(𝑆) = max𝑖∈𝑆 𝑣(𝑖)
▶ Subadditive: 𝑣(𝐴 ∪ 𝐵) ≤ 𝑣(𝐴) + 𝑣(𝐵), ∀𝐴, 𝐵 ⊆ [𝑛]
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Independent Items

Cannot compute optimal menu
[Daskalakis, Deckelbaum, Tzamos ’17]

Two Mechanisms:
1. SRev: Maximum revenue obtainable by pricing each item

separately.
2. BRev: Maximum revenue obtainable by pricing the grand

bundle via Myerson’s optimal auction.

Theorem
max {SRev, BRev} is a Ω (1)-approximation to Rev for a
subadditive buyer.
[Chawla, Hartline, Kleinberg ’07], [Chawla, Malec, Sivan ’10],
[Babaioff, Immorlica, Lucier, Weinberg ’14], [Rubinstein, Weinberg
’15]
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Correlations

Arbitrary correlated valuations ⟹ impossible with bounded
menu size [Hart, Nisan ’12]

Previous models:
▶ Linear Correlations

[Chawla, Malec, Sivan ’10], [Bateni, Dehghani, Hajiaghayi,
Seddighin ’15], [Immorlica, Singla, Waggoner ’20]

▶ Pairwise-Independent
[Caragiannis, Gravin, Lu, Wang ’22], [Dughmi, Kalayci, Patel
’24]
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Markov Random Fields (MRFs)

Graphical model of correlation (physics, statistics, ML, … )

Max. Weighted Degree Δ
▶ Δ = 0 ⟹ independence
▶ Δ = +∞ ⟹ arbitrary (positive) correlation

𝑒−4Δ ≤ Pr [𝑋𝑖 = 𝑦𝑖 | X−i = y−i]
Pr[𝑋𝑖 = 𝑦𝑖]

≤ 𝑒4Δ, ∀𝑖, y

[Brustle, Cai, Daskalakis ’20]
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Theorem [Cai, Oikonomou ’21]
max {SRev, BRev} is a 𝑒− O(Δ) -approximation to Rev for a
additive/unit-demand buyer.

∃ a 𝑒− O(Δ)-competitive prophet inequality for MRFs.

Upper bound of O (Δ−1/7).
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Our Results

Theorem [L., Patton, Singla ’24]
max {SRev, BRev} is a O (1/Δ)-approximation to Rev for a
subadditive buyer.

∃ a O (1/Δ)-competitive prophet inequality for MRFs.

▶ Exponential improvement.
▶ Generalization to a subadditive buyer.
▶ Tight for prophet inequality.
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Techniques for Independent Items

1. Core-Tail Decomposition
▶ Core: 𝒞 = {𝑖 | 𝑣(𝑖) ≤ 𝑇 }
▶ Tail: 𝒯 = {𝑖 | 𝑣(𝑖) > 𝑇 }

2. Marginal Mechanism Lemma

𝑅𝑒𝑣(𝐷) ≤ 𝑉 𝑎𝑙 (𝐷𝒞) + 𝑅𝑒𝑣 (𝐷𝒯)

[Hart, Nisan ’12], [Cai, Huang ’13], [Rubinstein, Weinberg ’15]
3. Choose “balanced” 𝑇

▶ 𝑇 ↗, 𝑇 is sparse, 𝑅𝑒𝑣 (𝐷𝒯) ≈ SRev
▶ 𝑇 ↘, 𝑉 𝑎𝑙 (𝐷𝒞) concentrates, 𝑉 𝑎𝑙 (𝐷𝒞) ≈ BRev
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Approximate Marginal Mechanism Lemma

Lemma
Let 𝐴, 𝐵 be disjoint sets of items, and 𝐷 be an arbitrary
distribution over monotone subadditive valuations 𝑣 ∶ 2𝐴∪𝐵 → ℝ≥0.
Then,

𝑅𝑒𝑣(𝐷) ≤ 2 (𝑉 𝑎𝑙 (𝐷𝐴) + 𝑅𝑒𝑣 (𝐷𝐵)) .

Proof based on discounted prices – restrict 𝑅𝑒𝑣(𝐷) to 𝐵, discount
𝑝𝑖 by 1/2
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Exponential Bucketing

Single Threshold 𝜏 ⟹ Random Threshold 𝑇 ← {𝜏, 𝑒𝜏, … , 𝑒𝑘Δ𝜏}
▶ Prophet Inequalities: 𝜏 = 𝔼[max𝑖 𝑋𝑖]/2
▶ Grand Bundle Pricing: 𝜏 = 𝑉 𝑎𝑙 (𝐷𝒞) /2

“Guess” scale of the problem
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Thank You!

Questions?
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