Improved Mechanisms and Prophet Inequalities for Graphical Dependencies

Vasilis Livanos

École Polytechnique Fédérale de Lausanne (EPFL) & Archimedes AI

Joint work with

Kalen Patton Sahil Singla Georgia Institute of Technology

October 22nd, 2024

Prophet Inequality

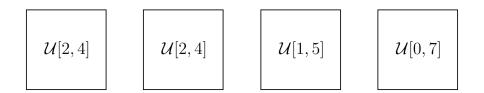
Prophet Inequality

[Krengel, Sucheston and Garling '77]

$$\begin{split} X_1, X_2, \dots, X_n \sim & (\mathsf{known}) \ \mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_n \\ \text{arrive in } \textit{adversarial order}. \end{split}$$

▶ Design stopping time to maximize selected value.
 ▶ Compare against all-knowing prophet: E[max_i X_i].
 ▶ Competitive Ratio:

 $\frac{\mathbb{E}[ALG]}{\mathbb{E}[\max_i X_i]}.$



$$\begin{tabular}{|c|c|c|c|c|} \hline $\mathcal{U}[2,4]$ & $\mathcal{U}[1,5]$ & $\mathcal{U}[0,7]$ \\ \hline $X_1=3.94$ & & & \\ \hline \end{tabular}$$

$$\begin{tabular}{|c|c|c|c|c|} \hline $\mathcal{U}[2,4]$ & $\mathcal{U}[1,5]$ & $\mathcal{U}[0,7]$ \\ \hline $X_1=3.94$ & $X_2=2.65$ & $\end{tabular}$$

$$\begin{tabular}{|c|c|c|c|c|c|c|} $\mathcal{U}[2,4]$ & $\mathcal{U}[1,5]$ & $\mathcal{U}[0,7]$ \\ $X_1=3.94$ & $X_2=2.65$ & $X_3=3.40$ \\ \end{tabular}$$

$$\begin{tabular}{|c|c|c|c|c|c|c|} $\mathcal{U}[2,4]$ & $\mathcal{U}[2,4]$ & $\mathcal{U}[1,5]$ & $\mathcal{U}[0,7]$ \\ $\mathcal{U}[2,4]$ & $X_1=3.94$ & $X_2=2.65$ & $X_3=3.40$ & $X_4=1.23$ \\ \end{tabular}$$

Prophet Inequality [Krengel, Sucheston and Garling '77, '78] \exists stopping strategy that achieves $1/2 \cdot \mathbb{E}[\max_i X_i]$, and this is tight.

Optimal strategy is a single-threshold algorithm ${\cal T}$

Prophet Inequality [Krengel, Sucheston and Garling '77, '78] \exists stopping strategy that achieves $1/2 \cdot \mathbb{E}[\max_i X_i]$, and this is tight.

Optimal strategy is a single-threshold algorithm ${\cal T}$

Applications:

- Auction Design
- Revenue Maximization
- Matching Markets
- Resource Allocation
- Portfolio Selection
- Supply Chain Management

Single Buyer Revenue Maximization

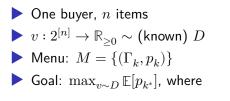
▶ One buyer, n items
 ▶ $v: 2^{[n]} \to \mathbb{R}_{\geq 0} \sim (\text{known}) D$

Single Buyer Revenue Maximization

 $\begin{array}{l} \bullet \quad \text{One buyer, } n \text{ items} \\ \bullet \quad v: 2^{[n]} \to \mathbb{R}_{\geq 0} \sim (\text{known}) \ D \\ \bullet \quad \text{Menu: } M = \{(\Gamma_k, p_k)\} \\ \bullet \quad \text{Goal: } \max_{v \sim D} \mathbb{E}[p_{k^*}], \text{ where} \end{array}$

$$k^* = \arg\max_k \mathop{\mathbb{E}}_{S \sim \Gamma_k} [v(S) - p_k]$$

Single Buyer Revenue Maximization



$$k^* = \arg\max_k \mathop{\mathbb{E}}_{S \sim \Gamma_k} [v(S) - p_k]$$

▶ Valuations:
▶ Additive: v(S) = ∑_{i∈S} v(i)
▶ Unit-Demand: v(S) = max_{i∈S} v(i)
▶ Subadditive: v(A ∪ B) ≤ v(A) + v(B), ∀A, B ⊆ [n]

Independent Items

Independent Items

Cannot compute optimal menu \implies approximation [Daskalakis, Deckelbaum, Tzamos '17]

Two Mechanisms:

- 1. SREV: Maximum revenue obtainable by pricing each item separately.
- 2. BREV: Maximum revenue obtainable by pricing the grand bundle via Myerson's optimal auction.

Independent Items

Cannot compute optimal menu \implies approximation [Daskalakis, Deckelbaum, Tzamos '17]

Two Mechanisms:

- 1. SREV: Maximum revenue obtainable by pricing each item separately.
- 2. BREV: Maximum revenue obtainable by pricing the grand bundle via Myerson's optimal auction.

Theorem

 $\max\left\{ SRev,\ BRev\right\}$ is a $\Omega\left(1\right)\text{-approximation to }Rev$ for a subadditive buyer.

[Chawla, Hartline, Kleinberg '07], [Chawla, Malec, Sivan '10], [Babaioff, Immorlica, Lucier, Weinberg '14], [Rubinstein, Weinberg '15]

Correlations

Arbitrary correlated valuations \implies impossible with bounded menu size [Hart, Nisan '12]

Correlations

Arbitrary correlated valuations \implies impossible with bounded menu size [Hart, Nisan '12]

Previous models:

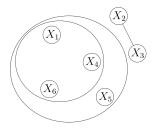
 Linear Correlations
 [Chawla, Malec, Sivan '10], [Bateni, Dehghani, Hajiaghayi, Seddighin '15], [Immorlica, Singla, Waggoner '20]

Pairwise-Independent [Caragiannis, Gravin, Lu, Wang '22], [Dughmi, Kalayci, Patel '24]

Markov Random Fields (MRFs)

Markov Random Fields (MRFs)

Graphical model of correlation (physics, statistics, ML, ...)



Markov Random Fields (MRFs)

Graphical model of correlation (physics, statistics, ML, ...)

Max. Weighted Degree Δ $\Delta = 0 \implies$ independence $\Delta = +\infty \implies$ arbitrary (positive) correlation $Dr[X = x \mid X = x \mid]$

$$e^{-4\Delta} \leq \frac{\Pr\left[X_i = y_i \mid \mathbf{X}_{-\mathbf{i}} = \mathbf{y}_{-\mathbf{i}}\right]}{\Pr[X_i = y_i]} \leq e^{4\Delta}, \qquad \forall i, \mathbf{y}$$

[Brustle, Cai, Daskalakis '20]

 X_2

 X_4

 (X_1)

Theorem [Cai, Oikonomou '21] $\max \{ SREV, BREV \} \text{ is a } e^{-O(\Delta)} \text{ -approximation to } REV \text{ for a additive/unit-demand buyer.}$

Theorem [Cai, Oikonomou '21] $\max \{ SREV, BREV \}$ is a $e^{-O(\Delta)}$ -approximation to REV for a additive/unit-demand buyer.

 $\exists \mbox{ a } e^{-\operatorname{O}(\Delta)}\mbox{-competitive prophet inequality for MRFs.}$

Theorem [Cai, Oikonomou '21] $\max \{ SREV, BREV \}$ is a $e^{-O(\Delta)}$ -approximation to REV for a additive/unit-demand buyer.

 $\exists \mbox{ a } e^{-{\rm O}(\Delta)}\mbox{-competitive prophet inequality for MRFs.}$

Upper bound of $O\left(\Delta^{-1/7}\right)\!.$

Our Results

Theorem [L., Patton, Singla '24] $\max{\{\rm SRev, BRev\}}$ is a $O\left(1/\Delta\right)\-approximation$ to $\rm Rev$ for a subadditive buyer.

Our Results

Theorem [L., Patton, Singla '24] $\max{\{{\rm SRev},{\rm BRev}\}}$ is a $O\left(1/\Delta\right)\-approximation$ to ${\rm Rev}$ for a subadditive buyer.

 \exists a $O\left(1/\Delta\right)\text{-competitive prophet inequality for MRFs.}$

Our Results

Theorem [L., Patton, Singla '24] $\max{\{{\rm SRev},{\rm BRev}\}}$ is a $O\left(1/\Delta\right)\-approximation$ to ${\rm Rev}$ for a subadditive buyer.

 $\exists \text{ a } O\left(1/\Delta\right)\text{-competitive prophet inequality for MRFs.}$

- Exponential improvement.
- Generalization to a subadditive buyer.
- Tight for prophet inequality.

Techniques for Independent Items

1. Core-Tail Decomposition

Core:
$$C = \{i \mid v(i) \le T\}$$

Tail: $T = \{i \mid v(i) > T\}$

Techniques for Independent Items

1. Core-Tail Decomposition

Core:
$$C = \{i \mid v(i) \le T\}$$

Tail: $T = \{i \mid v(i) > T\}$

2. Marginal Mechanism Lemma

$$Rev(D) \leq Val\left(D^{\mathcal{C}}\right) + Rev\left(D^{\mathcal{T}}\right)$$

[Hart, Nisan '12], [Cai, Huang '13], [Rubinstein, Weinberg '15]

Techniques for Independent Items

1. Core-Tail Decomposition

Core:
$$\mathcal{C} = \{i \mid v(i) \leq T\}$$

Tail: $\mathcal{T} = \{i \mid v(i) > T\}$

2. Marginal Mechanism Lemma

$$Rev(D) \leq Val\left(D^{\mathcal{C}}\right) + Rev\left(D^{\mathcal{T}}\right)$$

[Hart, Nisan '12], [Cai, Huang '13], [Rubinstein, Weinberg '15]

- 3. Choose "balanced" T
 - ▶ $T \nearrow$, T is sparse, $Rev(D^{\mathcal{T}}) \approx SRev$ ▶ $T \searrow$, $Val(D^{\mathcal{C}})$ concentrates, $Val(D^{\mathcal{C}}) \approx BRev$

Lemma

Let A,B be disjoint sets of items, and D be an arbitrary distribution over monotone subadditive valuations $v:2^{A\cup B}\to\mathbb{R}_{\geq0}.$ Then,

$$Rev(D) \leq 2\left(Val\left(D^A\right) + Rev\left(D^B\right)\right).$$

Proof based on discounted prices – restrict Rev(D) to B, discount $p_i \mbox{ by } 1/2$

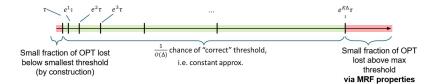
Exponential Bucketing

Single Threshold $\tau \implies$ Random Threshold $T \leftarrow \{\tau, e\tau, \dots, e^{k\Delta}\tau\}$

Prophet Inequalities: $\tau = \mathbb{E}[\max_i X_i]/2$

• Grand Bundle Pricing: $\tau = Val\left(D^{\mathcal{C}}\right)/2$

"Guess" scale of the problem



Thank You!

Questions?

