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Prophet Inequality

A)(l,A)(27 cee 7X”I’L ~/ (knOWﬂ) Dl’ 92, ces 7D7’L
arrive in adversarial order.

P Design stopping time to maximize selected value.
P Compare against all-knowing prophet: [E[max; X,].

P Competitive Ratio:
E[ALG]

E[max; X;]’
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Prophet Inequality
3 stopping strategy that achieves 1/2 - F[max; X|],
and this is tight.

Optimal strategy is a single-threshold algorithm T
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Prophet Inequality
3 stopping strategy that achieves 1/2 - F[max; X|],
and this is tight.

Optimal strategy is a single-threshold algorithm T

Applications:
P Auction Design
P Revenue Maximization
P Matching Markets
P Resource Allocation
P Portfolio Selection
P Supply Chain Management
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Single Buyer Revenue Maximization

P One buyer, n items
» v:2 — R~ (known) D
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Single Buyer Revenue Maximization

P One buyer, n items

» v:2 — R~ (known) D
» Menu: M = {(T},p,)}

P Goal: max,_p E[py:], where

k* = argmax E [v(S)— pg]
k S~I'y,
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Single Buyer Revenue Maximization

T SRR $3
P One buyer, n items % Y $4
» v:2 — R~ (known) D T $2
> Menu: M = {(T'y,py)} B o° g7 85
» Goal: max,,_p E[p.], where

k* = argmax E [v(S)— pg]
k S~I'y,

P Valuations:
P Additive: v(S) =3, _sv(i)
P Unit-Demand: v(S) = max; g v(i)
P Subadditive: v(AU B) <v(A) +v(B), YA,BCn]
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Independent Items
Cannot compute optimal menu = approximation

Two Mechanisms:

1. SREV: Maximum revenue obtainable by pricing each item
separately.

2. BREV: Maximum revenue obtainable by pricing the grand
bundle via Myerson's optimal auction.
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Independent Items
Cannot compute optimal menu = approximation

Two Mechanisms:

1. SREV: Maximum revenue obtainable by pricing each item
separately.

2. BREV: Maximum revenue obtainable by pricing the grand
bundle via Myerson's optimal auction.

Theorem
max {SREv, BREV} is a © (1)-approximation to REV for a
subadditive buyer.
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Correlations

Arbitrary correlated valuations = impossible with bounded
menu size
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Correlations

Arbitrary correlated valuations = impossible with bounded
menu size

Previous models:

P Linear Correlations

P Pairwise-Independent
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Markov Random Fields (MRFs)
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Markov Random Fields (MRFs)

Graphical model of correlation (physics, statistics, ML, ...)
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Markov Random Fields (MRFs)

Graphical model of correlation (physics, statistics, ML, ...)

Max. Weighted Degree A @
» A =0 = independence
» A =-+oco = arbitrary (positive) correlation

e < PriX, =y, | X =y
N Pr[X; = y,]

1
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Theorem

max {SREV, BREV} is a e~ O(4) _approximation to REV for a
additive/unit-demand buyer.
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Theorem

max {SREV, BREV} is a e~ 9(2) _approximation to REV for a
additive/unit-demand buyer.

3 a e~ O(A)_competitive prophet inequality for MRFs.
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Theorem

max {SREV, BREV} is a e~ 9(2) _approximation to REV for a
additive/unit-demand buyer.

3 a e~ O(A)_competitive prophet inequality for MRFs.

Upper bound of O (A*1/7).
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Our Results

Theorem

max {SREvV, BREV} is a O (1/A)-approximation to REV for a
subadditive buyer.
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Our Results
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Our Results

Theorem

max {SREvV, BREV} is a O (1/A)-approximation to REV for a
subadditive buyer.

3 a O(1/A)-competitive prophet inequality for MRFs.
P Exponential improvement.

P Generalization to a subadditive buyer.

P Tight for prophet inequality.
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Techniques for Independent Items

1. Core-Tail Decomposition
P Core: €= {i|v(i) <T}
P Tail: T = {i|v(i) > T}
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Techniques for Independent Items

1. Core-Tail Decomposition
P Core: €= {i|v(i) <T}
P Tail: T = {i|v(i) > T}

2. Marginal Mechanism Lemma

Rev(D) < Val (DY) + Rev (D7)
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Techniques for Independent Items

1. Core-Tail Decomposition
P Core: €= {i|v(i) <T}
P Tail: T = {i|v(i) > T}

2. Marginal Mechanism Lemma

Rev(D) < Val (DY) + Rev (D7)

3. Choose “balanced” T
> T T is sparse, Rev (D7) ~ SREV
> T, Val (D%) concentrates, Val (D%) ~ BREV
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Approximate Marginal Mechanism Lemma

Lemma
Let A, B be disjoint sets of items, and D be an arbitrary

distribution over monotone subadditive valuations v : 2498 — R_.

Then,
Rev(D) < 2(Val (D*) + Rev (DP?)).

Proof based on discounted prices — restrict Rev(D) to B, discount
p; by 1/2
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Exponential Bucketing

Single Threshold 7 = Random Threshold T + {T, er, ... ,6kAT}
P Prophet Inequalities: 7 = E[max; X,]/2
» Grand Bundle Pricing: 7= Val (D) /2

“Guess" scale of the problem

~._e" et et ekbp
\ S I 1
] | | | |
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e T
Small fraction of OPT lost o chance of “correct” threshold, Small fraction of OPT
below smallest threshold i.e. constant approx. lost above max
(by construction) threshold

via MRF properties
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Thank You!

Questions?

!

i)
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