Optimal Stopping Problems for Cost Minimization

Vasilis Livanos

livanos3@illinois.edu

University of Illinois Urbana-Champaign

March 10th, 2023

 Prophet Inequalities

Generalizations

The Grocer's Problem

- ▶ Want to sell an orange. We see *n* buyers *sequentially*.
- Buyer i has private valuation v_i. How to offer prices?
 - Option 1: Run an auction. Meh.

The Grocer's Problem

イロト 不得 トイヨト イヨト 二日

4 / 45

- Want to sell an orange. We see n buyers sequentially.
- Buyer i has private valuation v_i. How to offer prices?
 - Option 1: Run an auction. Meh.
 - Option 2: Become a grocer!
- Plan:
 - 1. Set price T.
 - 2. Leave store.
 - 3. ???
 - 4. Profit.

Optimal Stopping Problems

- Worst-case order + unknown v_i 's = Can't do anything.
- Random order + unknown v_i 's = Secretary problem.

• Worst-case order + some knowledge of v_i 's

Optimal Stopping Problems

- Worst-case order + unknown v_i 's = Can't do anything.
- Random order + unknown v_i 's = Secretary problem.
- Worst-case order + some knowledge of v_i 's

Prophet Inequality [Krengel, Sucheston and Garling '77]

 $X_1, X_2, \ldots, X_n \stackrel{\text{ind.}}{\sim} (\text{known}) \mathcal{D}_1, \mathcal{D}_2, \ldots, \mathcal{D}_n$ arrive in *adversarial* order.

Design stopping time to maximize selected value.
 Compare against all-knowing prophet: E[max_i X_i].

Prophet Inequality [Krengel, Sucheston and Garling '77, '78] \exists stopping strategy that achieves $1/2 \cdot \mathbb{E}[\max_i X_i]$, and this is tight.

$$X_1 = 1$$
 w.p. 1, and $X_2 = \begin{cases} 1/\varepsilon & \text{w.p. } \varepsilon \\ 0 & \text{w.p. } 1 - \varepsilon \end{cases}$

 $\mathbb{E} [\mathsf{ALG}] = 1 \text{ for all algorithms.}$ $\mathbb{E} [\mathsf{max}_i X_i] = \frac{1}{\varepsilon} \cdot \varepsilon + 1 \cdot (1 - \varepsilon) = 2 - \varepsilon.$

Prophet Inequality [Krengel, Sucheston and Garling '77, '78] \exists stopping strategy that achieves $1/2 \cdot \mathbb{E}[\max_i X_i]$, and this is tight.

$$X_1 = 1$$
 w.p. 1, and $X_2 = \begin{cases} 1/\varepsilon & \text{w.p. } \varepsilon \\ 0 & \text{w.p. } 1 - \varepsilon \end{cases}$

 $\mathbb{E} [\mathsf{ALG}] = 1 \text{ for all algorithms.}$ $\mathbb{E} [\mathsf{max}_i X_i] = \frac{1}{\varepsilon} \cdot \varepsilon + 1 \cdot (1 - \varepsilon) = 2 - \varepsilon.$

• Idea: Set threshold T, accept first $X_i \ge T$.

- $T : \Pr[\max_i X_i \ge T] = \frac{1}{2}$ works [Samuel-Cahn '84].
- $T = \frac{1}{2} \cdot \mathbb{E}[\max_i X_i]$ works [Kleinberg and Weinberg '12].

Corresponds to item price in grocer's problem.

.

$$X^* = \max_i X_i$$

$$p_i = \Pr[X^* = X_i] \implies \sum_i p_i = 1$$

$$\tau_i: \Pr[X_i \ge \tau_i] = p_i$$

$$v_i(p_i) \coloneqq \mathbb{E}[X_i \mid X_i \ge \tau_i]$$

$$\mathbb{E}[X^*] \le \sum_i v_i(p_i) \cdot p_i.$$

イロト イロト イヨト イヨト 二日

14 / 45

Idea

Reject every random variable X_i w.p. 1/2. Otherwise accept *i* iff $X_i \ge \tau_i$ (happens w.p. p_i).

$$\mathbb{E}[ALG] = \sum_{i} \Pr[\text{We reach } i] \cdot \frac{1}{2} \cdot p_i \cdot v_i(p_i)$$

Idea

Reject every random variable X_i w.p. 1/2. Otherwise accept *i* iff $X_i \ge \tau_i$ (happens w.p. p_i).

$$\mathbb{E}[ALG] = \sum_{i} \Pr[\text{We reach } i] \cdot \frac{1}{2} \cdot p_i \cdot v_i(p_i)$$

By a union bound, $\Pr[\text{We reach } i] \ge \Pr[\text{We pick nothing}] \ge 1 - \sum_{i} \frac{p_i}{2} \ge \frac{1}{2}.$ 1/4-approximation to $\mathbb{E}[X^*]$.

Idea

Reject every random variable X_i w.p. 1/2. Otherwise accept *i* iff $X_i \ge \tau_i$ (happens w.p. p_i).

$$\mathbb{E}[ALG] = \sum_{i} \Pr[\text{We reach } i] \cdot \frac{1}{2} \cdot p_i \cdot v_i(p_i)$$

By a union bound,

 $\Pr[\text{We reach } i] \geq \Pr[\text{We pick nothing}] \geq 1 - \sum_{i=1}^{n} \frac{p_i}{2} \geq \frac{1}{2}.$

• 1/4-approximation to $\mathbb{E}[X^*]$.

Rewrite

$$\mathbb{E}[ALG] \geq \sum_{i} r_i \cdot q_i \cdot p_i \cdot v_i(p_i).$$

Can we ensure $r_i \cdot q_i = 1/2?$

▶
$$r_1 = 1 \implies q_1 = 1/2$$
. Then $r_{i+1} = r_i (1 - q_i p_i)$
▶ If we set $q_i = \frac{1}{2r_i} \implies r_{i+1} = r_i - \frac{p_i}{2} = 1 - \sum_{i \leq i} \frac{p_i}{2} \ge \frac{1}{2}$

17 / 45

Idea

Reject every random variable X_i w.p. 1/2. Otherwise accept *i* iff $X_i \ge \tau_i$ (happens w.p. p_i).

$$\mathbb{E}[ALG] = \sum_{i} \Pr[\text{We reach } i] \cdot \frac{1}{2} \cdot p_i \cdot v_i(p_i)$$

By a union bound,

 $\Pr[\text{We reach } i] \ge \Pr[\text{We pick nothing}] \ge 1 - \sum_{i} \frac{p_i}{2} \ge \frac{1}{2}.$

• 1/4-approximation to $\mathbb{E}[X^*]$.

Thus

$$\mathbb{E}[ALG] \geq \frac{1}{2} \cdot \sum_{i} x_i \cdot w_i.$$

Cost Minimization

• Objective: Minimize selected value. Prophet: $\mathbb{E}[\min_i X_i]$.

 \blacktriangleright Forced to select an element \implies upwards-closed constraint.

Cost Minimization

- Objective: Minimize selected value. Prophet: $\mathbb{E}[\min_i X_i]$.
- Forced to select an element \implies upwards-closed constraint.
- No bounded approximation for adversarial or random order!

$$X_{1} = 1 \text{ w.p. } 1, \qquad X_{2} = \begin{cases} 1/\varepsilon & \text{w.p. } \varepsilon \\ 0 & \text{w.p. } 1 - \varepsilon \end{cases}$$
$$\frac{\mathbb{E}[ALG]}{\mathbb{E}[\min\{X_{1}, X_{2}\}]} = \frac{1}{\varepsilon}$$

What about I.I.D.? <u>Intuition:</u> Set T = 2 · ℝ[min_i X_i].

Cost Minimization

- Objective: Minimize selected value. Prophet: $\mathbb{E}[\min_i X_i]$.
- Forced to select an element \implies upwards-closed constraint.
- ▶ No bounded approximation for adversarial or random order!

$$X_{1} = 1 \text{ w.p. } 1, \qquad X_{2} = \begin{cases} 1/\varepsilon & \text{w.p. } \varepsilon \\ 0 & \text{w.p. } 1 - \varepsilon \end{cases}$$
$$\frac{\mathbb{E}[ALG]}{\mathbb{E}[\min\{X_{1}, X_{2}\}]} = \frac{1}{\varepsilon}$$

What about I.I.D.? <u>Intuition False Intuition:</u>

Set $T = 2 \cdot \mathbb{E}[\min_i X_i]$.

• Doesn't work! $\Pr[We \text{ are forced to select } X_n] \rightarrow 1.$

Is Cost Minimization hopeless?

Optimal algorithm: set $\tau_i = \mathbb{E}[ALG_{i+1,\dots,n}]$, accept first $X_i \leq \tau_i$.

Is Cost Minimization hopeless?

Optimal algorithm: set $\tau_i = \mathbb{E}[ALG_{i+1,...,n}]$, accept first $X_i \leq \tau_i$. Idea

Look at "fatness" of \mathcal{D} 's tail. Captured by \mathcal{D} 's Hazard Rate.

$$h(x) = \frac{f(x)}{1 - F(x)}$$

MHR Distribution

h is increasing.

Important subclass, lots of past work.
 Good guarantees in applications (e.g. auction revenue maximization).

Theorem ([L.-Mehta '22])

For every entire distribution, there exists an optimal c-approximate Cost PI for rank-1 matroids.

- c is distribution-dependent can be arbitrarily large.
- New use of hazard rate in PIs as *analysis tool*.
- MHR distributions $\implies c = 2$ -approximation.

Theorem ([L.-Mehta '22])

For every entire distribution, there exists an optimal c-approximate Cost PI for rank-1 matroids.

- c is distribution-dependent can be arbitrarily large.
- New use of hazard rate in PIs as *analysis tool*.
- MHR distributions $\implies c = 2$ -approximation.

Let $H(x) = \int_0^x h(u) du$ (Cumulative Hazard Rate).

Entire Distribution

 \mathcal{D} is *entire* if H has convergent series expansion $H(x) = \sum_{i=1}^{\infty} a_i x^{d_i}$ (where $0 < d_1 < d_2 < \dots$) for every x in the support of \mathcal{D} .

 E.g. uniform, exponential, Gaussian, Weibull, Rayleigh, beta, gamma

PI for Cost Minimization

$$c(d_1) = \Theta\left(\mathrm{e}^{1/d_1}
ight)$$

• c is tight for
$$\mathcal{D}$$
 with $H(x) = x^{d_1}$.

Theorem ([L.-Mehta '22])

For every entire distribution, there exists a (tight) O (polylog n) -approximate **single-threshold** Cost PI for rank-1 matroids.

PI for Cost Minimization

$$c(d_1) = \Theta\left(\mathrm{e}^{1/d_1}
ight)$$

• c is tight for
$$\mathcal{D}$$
 with $H(x) = x^{d_1}$.

Theorem ([L.-Mehta '22])

For every entire distribution, there exists a (tight) O (polylog n) -approximate **single-threshold** Cost PI for rank-1 matroids. Why only for entire distributions?

Equal-Revenue Distribution:

 $F(x) = 1 - \frac{1}{x}$. $\mathbb{E}[X] = +\infty$, but $\mathbb{E}[\min\{X_1, X_2\}] < +\infty$.

 $H(x) = \log x$ and its power series converges only for $x \le 2$. [Lucier '22]

Beating the Prophet?

Powerful technique. $\mathbb{E}[ALG] \leq \mathbb{E}[\max_{i=1}^{n} X_i]$?

Beating the Prophet?

Powerful technique. $\mathbb{E}[ALG] \leq \mathbb{E}[\max_{i=1}^{n} X_i]$?

Yes; if ALG on X_1, \ldots, X_m and m > n.

Definition (Competition Complexity)

The competition complexity (CC) of a distribution \mathcal{D} is

$$\sup_{n\geq 1} \frac{\inf \{m \mid \mathbb{E}[ALG_m] \leq \mathbb{E}[\max_{i=1}^n X_i]\}}{n}$$

<ロ><一><一><一><一><一><一><一</td>29/45

Extreme Value Distributions

Theorem ([Fisher–Tippett–Gnedenko '28, '43])

The minimum of n IID random variables (after renormalization) converges in distribution to one of 3 possible distributions:

- Gumbel
- ► Weibull
- Fréchet

Theorem ([L.-Saona-Verdugo unpublished])

The CC of Gumbel and Weibull distributions is 2. The CC of Fréchet distributions is ∞ .

Extreme Value Distributions

Theorem ([Fisher–Tippett–Gnedenko '28, '43])

The minimum of n IID random variables (after renormalization) converges in distribution to one of 3 possible distributions:

- Gumbel
- ► Weibull
- Fréchet

Theorem ([L.-Saona-Verdugo unpublished])

The CC of Gumbel and Weibull distributions is 2. The CC of Fréchet distributions is ∞ .

Theorem ([L.-Saona-Verdugo unpublished])

For maximization, the CC of Gumbel and Weibull distributions is 2. The CC of Fréchet distributions is e. **Prophet Inequalities**

Generalizations

How to generalize PIs?

$$\begin{array}{lll} \max & \sum_{i} v_{i}(z_{i}) \cdot z_{i} & \max & \sum_{i} w_{i} \cdot z_{i} \\ \text{s.t.} & \sum_{i}^{i} z_{i} \leq 1 & \Longrightarrow & \text{s.t.} & \textbf{z} \in \mathcal{P}(\mathcal{M}) \\ 0 \leq z_{i} \leq 1 & \forall i & 0 \leq z_{i} \leq 1 & \forall i \end{array}$$
(2)

> x: Optimal solution to (2). How to round x?

How to generalize PIs?

$$\max \sum_{i}^{i} v_{i}(z_{i}) \cdot z_{i} \qquad \max \sum_{i}^{i} w_{i} \cdot z_{i}$$

s.t.
$$\sum_{i}^{i} z_{i} \leq 1 \qquad \Longrightarrow \qquad \text{s.t.} \qquad \begin{array}{c} z_{i} \in \mathcal{P}(\mathcal{M}) \\ 0 \leq z_{i} \leq 1 \quad \forall i \end{array} \qquad (2)$$

• x: Optimal solution to (2). How to round x?

Attempt #1

Create random set *R* where $i \in R$ independently w.p. x_i (active elements).

$$\bullet \mathbb{E}[\sum_{i\in R} w_i] = \sum_i w_i \cdot x_i$$

R might be infeasible

How to generalize PIs?

Attempt #2: Contention Resolution Scheme (CRS) π

- 1. Create random set R where $i \in R$ independently w.p. x_i .
- 2. Drop elements from R to create feasible $\pi(R)$.
- ► [Chekuri, Vondrák and Zenklusen '11].

c-selectability

CRS is c-selectable if

$$\Pr[i \in \pi(R) \mid i \in R] \ge c \quad \forall i.$$

- CRS is *c*-selectable \implies *c*-approximation to LP.
- CRSs combine in black-box way for general constraints/objectives.

Contention Resolution Schemes (CRSs)

Theorem [Chekuri, Vondrák and Zenklusen '11]

There exists a (1 - 1/e)-selectable CRS for matroid polytopes. Holds if R revealed in *uniformly random* order. What about *adversarial* order?

Online Contention Resolution Scheme (OCRS) [Alaei '11, Feldman, Svensson and Zenklusen '16]

 \exists 1/2-selectable OCRS for rank-1 matroids (tight). [Alaei '11] \exists 1/2-selectable OCRS for matroids. [Lee, Singla '18]

Greedy OCRSs

Greedy OCRS (Informal)

Decides (randomly) which elements to select *before* it sees *R*.

Theorem ([L. '22])

 $\exists \ 1/e$ -selectable Greedy OCRS for rank-1 matroids, and this is the best possible.

- Works against more powerful adversaries.
- Idea extends to partition, uniform and transversal matroids.

Open Problems

- 1. For Cost PI, only use *k*-thresholds for 1 < k < n. How does the ratio change?
- 2. Can we extend 1/e-Greedy OCRS to general matroids?
- 3. What is the best *c*-OCRS for (bipartite / general) matchings?
 - ► ≥ 0.349-OCRS for bipartite, ≥ 0.344-OCRS [MacRury, Ma, Grammel '22]
 - ≤ 0.433-OCRS for bipartite, ≤ 0.4-OCRS [MacRury, Ma, Grammel '22]
 - ► $\geq 1/2e \approx 0.184$ -Greedy OCRS [Feldman, Svensson, Zenklusen '16]

Thank You!

Questions?

