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The Grocer’s Problem

▶ Want to sell an orange. We see n buyers sequentially.
▶ Buyer i has private valuation vi . How to offer prices?

▶ Option 1: Run an auction. Meh.

▶ Option 2: Become a grocer!
▶ Plan:

1. Set price T .
2. Leave store.
3. ???
4. Profit.
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Optimal Stopping Problems

▶ Worst-case order + unknown vi ’s = Can’t do anything.
▶ Random order + unknown vi ’s = Secretary problem.
▶ Worst-case order + some knowledge of vi ’s

Prophet Inequality
[Krengel, Sucheston and Garling ’77]

X1, X2, . . . , Xn
ind.∼ (known) D1, D2, . . . , Dn

arrive in adversarial order.

▶ Design stopping time to maximize selected value.
▶ Compare against all-knowing prophet: E[maxi Xi ].
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Let’s play!

X1 = 2.34 X2 = 3.16 X3 = 3.79 X4 = 4.39
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Prophet Inequality

Prophet Inequality [Krengel, Sucheston and Garling ’77, ’78]
∃ stopping strategy that achieves 1/2 · E[maxi Xi ],
and this is tight.

X1 = 1 w.p. 1, and X2 =
{

1/ε w.p. ε

0 w.p. 1 − ε

E [ALG] = 1 for all algorithms.

E[maxi Xi ] = 1
ε · ε + 1 · (1 − ε) = 2 − ε.

▶ Idea: Set threshold T , accept first Xi ≥ T .
▶ T : Pr[maxi Xi ≥ T ] = 1/2 works [Samuel-Cahn ’84].
▶ T = 1/2 · E[maxi Xi ] works [Kleinberg and Weinberg ’12].
▶ Corresponds to item price in grocer’s problem.
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Proof for rank-1 Matroids

X ∗ = maxi Xi
pi = Pr[X ∗ = Xi ] =⇒

∑
i pi = 1.

▶ τi : Pr[Xi ≥ τi ] = pi
▶ vi(pi) := E [Xi | Xi ≥ τi ]

▶ E[X ∗] ≤
∑

i vi(pi) · pi .
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Proof for rank-1 Matroids

Idea
Reject every random variable Xi w.p. 1/2.
Otherwise accept i iff Xi ≥ τi (happens w.p. pi).

E[ALG ] =
∑

i
Pr[We reach i ] · 1/2 · pi · vi(pi)

By a union bound,
Pr[We reach i ] ≥ Pr[We pick nothing] ≥ 1 −

∑
i

pi
2 ≥ 1

2 .

▶ 1/4-approximation to E[X ∗].
Rewrite

E[ALG ] ≥
∑

i
ri · qi · pi · vi(pi).

Can we ensure ri · qi = 1/2?
▶ r1 = 1 =⇒ q1 = 1/2. Then ri+1 = ri (1 − qipi)
▶ If we set qi = 1

2ri
=⇒ ri+1 = ri − pi

2 = 1 −
∑

j≤i
pi
2 ≥ 1

2
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Proof for rank-1 Matroids

Idea
Reject every random variable Xi w.p. 1/2.
Otherwise accept i iff Xi ≥ τi (happens w.p. pi).

E[ALG ] =
∑

i
Pr[We reach i ] · 1/2 · pi · vi(pi)

By a union bound,
Pr[We reach i ] ≥ Pr[We pick nothing] ≥ 1 −

∑
i

pi
2 ≥ 1

2 .

▶ 1/4-approximation to E[X ∗].

Thus
E[ALG ] ≥ 1

2 ·
∑

i
xi · wi .
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Cost Minimization

▶ Objective: Minimize selected value. Prophet: E[mini Xi ].
▶ Forced to select an element =⇒ upwards-closed constraint.

▶ No bounded approximation for adversarial or random order!

X1 = 1 w.p. 1, X2 =
{

1/ε w.p. ε

0 w.p. 1 − ε

E[ALG ]
E[min{X1, X2}] = 1

ε

▶ What about I.I.D.?
Intuition:
Set T = 2 · E[mini Xi ].
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▶ Forced to select an element =⇒ upwards-closed constraint.
▶ No bounded approximation for adversarial or random order!

X1 = 1 w.p. 1, X2 =
{

1/ε w.p. ε

0 w.p. 1 − ε

E[ALG ]
E[min{X1, X2}] = 1

ε

▶ What about I.I.D.?
Intuition False Intuition:
Set T = 2 · E[mini Xi ].
▶ Doesn’t work! Pr[We are forced to select Xn] → 1.
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Is Cost Minimization hopeless?

Optimal algorithm: set τi = E[ALGi+1,...,n], accept first Xi ≤ τi .

Idea
Look at ”fatness” of D’s tail. Captured by D’s Hazard Rate.

h(x) = f (x)
1 − F (x)

MHR Distribution
h is increasing.
▶ Important subclass, lots of past work.

Good guarantees in applications (e.g. auction revenue maximization).
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Theorem ([L.-Mehta ’22])
For every entire distribution, there exists an optimal c-approximate
Cost PI for rank-1 matroids.
▶ c is distribution-dependent – can be arbitrarily large.
▶ New use of hazard rate in PIs as analysis tool.
▶ MHR distributions =⇒ c = 2-approximation.

Let H(x) =
∫ x

0 h(u) du (Cumulative Hazard Rate).

Entire Distribution
D is entire if H has convergent series expansion H(x) =

∑∞
i=1 aixdi

(where 0 < d1 < d2 < . . . ) for every x in the support of D.
▶ E.g. uniform, exponential, Gaussian, Weibull, Rayleigh, beta,

gamma
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PI for Cost Minimization

c(d1) = Θ
(
e1/d1

)

▶ c is tight for D with H(x) = xd1 .

Theorem ([L.-Mehta ’22])
For every entire distribution, there exists a (tight) O (polylog n)
-approximate single-threshold Cost PI for rank-1 matroids.

Why only for entire distributions?

Equal-Revenue Distribution:

F (x) = 1 − 1/x. E[X ] = +∞, but E[min{X1, X2}] < +∞.

H(x) = log x and its power series converges only for x ≤ 2.
[Lucier ’22]
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Beating the Prophet?

Powerful technique. E[ALG] ≤ E[maxn
i=1 Xi ]?

Yes; if ALG on X1, . . . , Xm and m > n.

Definition (Competition Complexity)
The competition complexity (CC) of a distribution D is

sup
n≥1

inf {m | E[ALGm] ≤ E[maxn
i=1 Xi ]}

n
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Extreme Value Distributions

Theorem ([Fisher–Tippett–Gnedenko ’28, ’43])
The minimum of n IID random variables (after renormalization)
converges in distribution to one of 3 possible distributions:
▶ Gumbel
▶ Weibull
▶ Fréchet

Theorem ([L.-Saona-Verdugo unpublished])
The CC of Gumbel and Weibull distributions is 2.
The CC of Fréchet distributions is ∞.

Theorem ([L.-Saona-Verdugo unpublished])
For maximization, the CC of Gumbel and Weibull distributions is 2.
The CC of Fréchet distributions is e.
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The CC of Fréchet distributions is e.

31 / 45



Overview

Prophet Inequalities

Generalizations

32 / 45



How to generalize PIs?

max
∑

i
vi(zi) · zi

s.t.
∑

i
zi ≤ 1

0 ≤ zi ≤ 1 ∀i

=⇒
max

∑
i

wi · zi

s.t. z ∈ P(M) (2)
0 ≤ zi ≤ 1 ∀i

▶ x: Optimal solution to (2). How to round x?

Attempt #1
Create random set R where i ∈ R independently w.p. xi
(active elements).

E[
∑

i∈R wi ] =
∑

i wi · xi

R might be infeasible
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How to generalize PIs?

Attempt #2: Contention Resolution Scheme (CRS) π

1. Create random set R where i ∈ R independently w.p. xi .
2. Drop elements from R to create feasible π(R).

▶ [Chekuri, Vondrák and Zenklusen ’11].

c-selectability
CRS is c-selectable if

Pr [i ∈ π(R) | i ∈ R] ≥ c ∀i .

▶ CRS is c-selectable =⇒ c-approximation to LP.
▶ CRSs combine in black-box way for general

constraints/objectives.

35 / 45



Contention Resolution Schemes (CRSs)

Theorem [Chekuri, Vondrák and Zenklusen ’11]
There exists a (1 − 1/e)-selectable CRS for matroid polytopes.
Holds if R revealed in uniformly random order. What about
adversarial order?
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Online Contention Resolution Schemes (OCRSs)

Online Contention Resolution Scheme (OCRS)
[Alaei ’11, Feldman, Svensson and Zenklusen ’16]

∃ 1/2-selectable OCRS for rank-1 matroids (tight). [Alaei ’11]
∃ 1/2-selectable OCRS for matroids. [Lee, Singla ’18]
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Greedy OCRSs

Greedy OCRS (Informal)
Decides (randomly) which elements to select before it sees R.

Theorem ([L. ’22])
∃ 1/e -selectable Greedy OCRS for rank-1 matroids, and this is the
best possible.
▶ Works against more powerful adversaries.
▶ Idea extends to partition, uniform and transversal matroids.
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Open Problems

1. For Cost PI, only use k-thresholds for 1 < k < n. How does
the ratio change?

2. Can we extend 1/e-Greedy OCRS to general matroids?
3. What is the best c-OCRS for (bipartite / general) matchings?

▶ ≥ 0.349-OCRS for bipartite, ≥ 0.344-OCRS
[MacRury, Ma, Grammel ’22]

▶ ≤ 0.433-OCRS for bipartite, ≤ 0.4-OCRS
[MacRury, Ma, Grammel ’22]

▶ ≥ 1/2e ≈ 0.184-Greedy OCRS
[Feldman, Svensson, Zenklusen ’16]
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Thank You!

Questions?
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