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Prophet Inequalities

Generalizations
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The Grocer's Problem

> Want to sell an orange. We see n buyers sequentially.
» Buyer i has private valuation v;. How to offer prices?
» Option 1: Run an auction. Meh.
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> Want to sell an orange. We see n buyers sequentially.

The Grocer's Problem

» Buyer i has private valuation v;. How to offer prices?

» Option 1: Run an auction. Meh.
» Option 2: Become a grocer!

» Plan:

1.

Set price T.

2. Leave store.
3.
4. Profit.

7

4/45



Optimal Stopping Problems

» Worst-case order + unknown v;'s = Can't do anything.

» Random order 4+ unknown v;'s = Secretary problem.

» | Worst-case order + some knowledge of v;'s
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Optimal Stopping Problems

» Worst-case order 4+ unknown v;'s = Can't do anything.

» Random order 4+ unknown v;'s = Secretary problem.

» | Worst-case order + some knowledge of v;'s

Prophet Inequality

ind.
Xl, XQ, ey Xn ~ (known) Dl,DQ, e ,Dn
arrive in adversarial order.

» Design stopping time to maximize selected value.
» Compare against all-knowing prophet. E[max; X;].
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Let's play!
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Let's play!
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Let's play!
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Let's play!
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X3 = 3.79
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Prophet Inequality

Prophet Inequality
3 stopping strategy that achieves 1/2 - E[max; X,
and this is tight.

1
X, =1 wp. 1, and X = 4 1% WP €
0 wp l—¢

E [ALG] = 1 for all algorithms.
E[max; Xj]=1-e+1.-(1-¢)=2—¢.

3
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Prophet Inequality

Prophet Inequality
3 stopping strategy that achieves 1/2 - E[max; X,
and this is tight.

e w.p. €

X1=1 wp. 1 and Xo =
! P 2 {O wp. 1—¢

E [ALG] = 1 for all algorithms.
E[max; Xj]=1-e+1.-(1-¢)=2—¢.

1.
» ldea: Set threshold T, accept first X; > T.

» T :Pr[max; X; > T| = 1/2 works
» T =1/2- E[max; X;] works
» Corresponds to item price in grocer's problem.
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Proof for rank-1 Matroids

X* = max,-X;
pi = PF[X* = X,] — Zipi =1.

> 72 Pr[Xi > 7] = pi )
> vi(pi) =E[Xi | Xi > 7] //

> E[X*] <32 vilpi) - pi-
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Proof for rank-1 Matroids

ldea
Reject every random variable X; w.p. 1/2.
Otherwise accept i iff X; > 7; (happens w.p. p;).

E[ALG] = Z Pr[We reach i] - 1/2 - p; - vi(p:)
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Proof for rank-1 Matroids

ldea
Reject every random variable X; w.p. 1/2.
Otherwise accept i iff X; > 7; (happens w.p. p;).

E[ALG] = Z Pr[We reach i]-1/2- p; - vi(pi)

By a union bound,
Pr[We reach i] > Pr[We pick nothing] > 1 — Z

i

N
AV
N =

» 1/s-approximation to E[X*].
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Proof for rank-1 Matroids

ldea
Reject every random variable X; w.p. 1/2.
Otherwise accept i iff X; > 7; (happens w.p. p;).

E[ALG] = Z Pr[We reach i] - 1/2 - p; - vi(p:)

By a union bound,

Pr[We reach i] > Pr[We pick nothing] > 1 — Z% > %
» 1/s-approximation to E[X*]. ’
Rewrite
E[ALG] > Z ri-qi - pi-vi(pi)-
Can we ensure r; - g; = 1/27
> n=1= q =1 Then riy1 = ri (1 — qipi)
> Ifwesetq,-zzirl — rip=r—-5=1- ng/%Z%
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Proof for rank-1 Matroids

ldea
Reject every random variable X; w.p. 1/2.
Otherwise accept i iff X; > 7; (happens w.p. p;).

E[ALG] = Z Pr[We reach i] - 1/2- p; - vi(p;i)
By a union bound,

Pr[We reach i] > Pr[We pick nothing] > 1 — Z

i

B
\Y

» 1/s-approximation to E[X*].

N

Thus 1
E[ALG] > 5 . Zi:X,' - Wi
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Cost Minimization

» Objective: Minimize selected value. Prophet: E[min; Xj].

» Forced to select an element = upwards-closed constraint.
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Cost Minimization

» Objective: Minimize selected value. Prophet: E[min; Xj].

» Forced to select an element = upwards-closed constraint.

» No bounded approximation for adversarial or random order!

1
X, =1wp. 1, P R
0 wp 1-—¢

E[ALG] 1

E[min{Xs, Xo}] ¢

» What about I.1.D.?
Intuition:
Set T =2 - E[min; Xi].
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Cost Minimization

» Objective: Minimize selected value. Prophet: E[min; Xj].
» Forced to select an element = upwards-closed constraint.

» No bounded approximation for adversarial or random order!

1
X1 =1 w.p. 1, X2 = /8 Wpe
0 wp 1-—¢

EALG] 1

E[min{Xl, XQ}] €

» What about I.1.D.?
Intuition False Intuition:

Set T=2- ]E[min,- X,]
» Doesn't work! Pr[We are forced to select X,] — 1.
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Is Cost Minimization hopeless?

Optimal algorithm: set 7; = E[ALGjy1,.. 5], accept first X; < 7;.
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Is Cost Minimization hopeless?

Optimal algorithm: set 7; = E[ALGjy1,.. 5], accept first X; < 7;.

ldea
Look at "fatness” of D’s tail. Captured by D's Hazard Rate.

MHR Distribution

h is increasing.

» Important subclass, lots of past work.
Good guarantees in applications (e.g. auction revenue maximization).
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Theorem ( )

For every entire distribution, there exists an optimal c-approximate
Cost Pl for rank-1 matroids.

» c is distribution-dependent — can be arbitrarily large.
> New use of hazard rate in Pls as analysis tool.
» MHR distributions = ¢ = 2-approximation.
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Theorem ( )

For every entire distribution, there exists an optimal c-approximate
Cost Pl for rank-1 matroids.

» c is distribution-dependent — can be arbitrarily large.
> New use of hazard rate in Pls as analysis tool.
» MHR distributions = ¢ = 2-approximation.

Let H(x) = [ h(u) du (Cumulative Hazard Rate).

Entire Distribution
D is entire if H has convergent series expansion H(x) = 372 a;x¢
(where 0 < di < d» < ...) for every x in the support of D.

> E.g. uniform, exponential, Gaussian, Weibull, Rayleigh, beta,
gamma
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Pl for Cost Minimization

c(d) =0 (el/dl)

> cis tight for D with H(x) = x.

Theorem ( )

For every entire distribution, there exists a (tight) O (polylog n)
-approximate single-threshold Cost Pl for rank-1 matroids.
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Pl for Cost Minimization

c(d) =0 (el/dl)

> cis tight for D with H(x) = x.

Theorem ( )

For every entire distribution, there exists a (tight) O (polylog n)
-approximate single-threshold Cost Pl for rank-1 matroids.

Why only for entire distributions?
Equal-Revenue Distribution:
F(x) =1—Yx. E[X] = +o0, but E[min{X1, Xo}] < +o0.

H(x) = log x and its power series converges only for x < 2.
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Beating the Prophet?

Powerful technique. E[ALG] < E[max?_; Xj]?
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Beating the Prophet?

Powerful technique. E[ALG] < E[max?_; Xj]?

Yes; if ALG on Xi,..., X, and m > n.

Definition (Competition Complexity)
The competition complexity (CC) of a distribution D is

sup inf {m | E[ALGp,] < E[max}_; Xj]}

n>1 n
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Extreme Value Distributions

Theorem ( )

The minimum of n IID random variables (after renormalization)
converges in distribution to one of 3 possible distributions:

» Gumbel
> Weibull
» Fréchet

Theorem ( )

The CC of Gumbel and Weibull distributions is 2.
The CC of Fréchet distributions is co.
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Extreme Value Distributions

Theorem ( )

The minimum of n IID random variables (after renormalization)
converges in distribution to one of 3 possible distributions:
» Gumbel

» Weibull
» Fréchet

Theorem ( )
The CC of Gumbel and Weibull distributions is 2.
The CC of Fréchet distributions is co.

Theorem ( )

For maximization, the CC of Gumbel and Weibull distributions is 2.
The CC of Fréchet distributions is e.
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Prophet Inequalities

Generalizations
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How to generalize Pls?

max > vi(z) -z max Y wi-z

s.t. szgl = st. zeP(M)
OSZ,'S]. VI

» x: Optimal solution to (2). How to round x?
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How to generalize Pls?

max > vi(z) -z max Y wi-z

s.t. Zz,- <1 = st. zeP(M) (2)
0<z<1 Vi .

» x: Optimal solution to (2). How to round x?

Attempt #1
Create random set R where i € R independently w.p. x;
(active elements).

€& B[ icrwil=wi X
® R might be infeasible
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How to generalize Pls?

Attempt #2: Contention Resolution Scheme (CRS) 7

1. Create random set R where i € R independently w.p. x;.

2. Drop elements from R to create feasible 7(R).
>

c-selectability
CRS is c-selectable if

Prlien(R)|ie Rl>c Vi

» CRS is c-selectable = c-approximation to LP.

» CRSs combine in black-box way for general
constraints/objectives.
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Contention Resolution Schemes (CRSs)

elements .
TP700000D)
5.¢¢.¢¢¢**+:§ CRS

elements

o o g

selected elements

Theorem

There exists a (1 — 1/e)-selectable CRS for matroid polytopes.

Holds if R revealed in uniformly random order. What about

adversarial order?
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Online Contention Resolution Schemes (OCRSs)

Online Contention Resolution Scheme (OCRS)

elements .
E:QOOOOOQOOE
‘e ——— OCRS
elements
C o

selected elements
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Online Contention Resolution Schemes (OCRSs)

Online Contention Resolution Scheme (OCRS)

elements .
E:Q(‘)OOOOQOOE
‘® ——— OCRS
elements
(@ —

selected elements
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Online Contention Resolution Schemes (OCRSs)

Online Contention Resolution Scheme (OCRS)

elements .
{Q(‘D?OOOQOOE
X +——— OCRS
elements
(@ —

selected elements
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Online Contention Resolution Schemes (OCRSs)

Online Contention Resolution Scheme (OCRS)

elements .
E:Q(‘D?CFOOOOOE
T +——— OCRS
elements

selected elements
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Online Contention Resolution Schemes (OCRSs)

Online Contention Resolution Scheme (OCRS)

. elements '

EAQ(‘D???OOOOE

0. 086 +——— OCRS
elements

selected elements
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Online Contention Resolution Schemes (OCRSs)

Online Contention Resolution Scheme (OCRS)

elements .
D A
*********}—'OCRS
elements
@ [ 04——‘

selected elements

J1/2-selectable OCRS for rank-1 matroids (tight).
31/2-selectable OCRS for matroids.

42/45



Greedy OCRSs

Greedy OCRS (Informal)

Decides (randomly) which elements to select before it sees R.

Theorem ( )

d1/e -selectable Greedy OCRS for rank-1 matroids, and this is the
best possible.

» Works against more powerful adversaries.

» |dea extends to partition, uniform and transversal matroids.
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Open Problems

1. For Cost PI, only use k-thresholds for 1 < k < n. How does
the ratio change?
2. Can we extend 1/e-Greedy OCRS to general matroids?
3. What is the best c-OCRS for (bipartite / general) matchings?
» > 0.349-OCRS for bipartite, > 0.344-OCRS

» < 0.433-OCRS for bipartite, < 0.4-OCRS

» > 1/5¢ 2 0.184-Greedy OCRS
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Thank You!

Questions?

1

)
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