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Prophet Inequality

[Krengel, Sucheston, Garling ’77]

𝑋1, 𝑋2, … , 𝑋𝑛 ∼ (known) 𝒟1, 𝒟2, … , 𝒟𝑛
arrive in adversarial order

▶ Design stopping time to maximize selected value
▶ Compare against all-knowing prophet: 𝔼[max𝑖 𝑋𝑖]
▶ Competitive Ratio:

𝔼[𝐴𝐿𝐺]
𝔼[max𝑖 𝑋𝑖]
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𝑋1 = 10.30 𝑋2 = 9.54 𝑋3 = 8.14 𝑋4 = 0
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Prophet Inequality [Krengel, Sucheston, Garling ’77, ’78]
∃ stopping strategy that achieves 1/2 ⋅ 𝔼[max𝑖 𝑋𝑖],
and this is tight

▶ Idea: Set threshold 𝑇 , accept first 𝑋𝑖 ≥ 𝑇
▶ 𝑇 ∶ Pr[max𝑖 𝑋𝑖 ≥ 𝑇 ] = 1/2 works

[Samuel-Cahn ’84]
▶ 𝑇 = 1/2 ⋅ 𝔼[max𝑖 𝑋𝑖] works

[Wittmann ’95, Kleinberg and Weinberg ’12]
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1. When can we get better guarantees?
Can 1/2 be improved?

2. What if 𝒟1 = 𝒟2 = ⋯ = 𝒟𝑛 = 𝒟?
3. Worst-case 𝒟?

IID Prophet Inequality [Hill, Kertz ’82,
Correa, Foncea, Hoeksma, Oosterwijk and Vredeveld ’21]
For any 𝒟, ∃ threshold stopping strategy 𝜏1, 𝜏2, … , 𝜏𝑛 that
achieves 𝛽 ⋅ 𝔼[max𝑖 𝑋𝑖], where 𝛽 ≈ 0.745, and this is tight

Worst-case 𝒟: High variance – depends on 𝑛
Most of the mass is at 0 – low probability of getting high values
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Minimization

1. Is Min similar to Max?
2. Required to select a value

▶ No hope for universal bound: [Lucier ’22]

𝒟 ∶ 𝐹(𝑥) = 1 − 1/𝑥, with 𝑥 ∈ [1, +∞)
(Equal-revenue distribution)

𝔼[𝑋] = 1 + ∫∞
1 (1 − 𝐹(𝑥)) 𝑑𝑥 = +∞, but

𝔼[min{𝑋1, 𝑋2}] = 1 + ∫∞
1 (1 − 𝐹(𝑥))2 𝑑𝑥 < +∞
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Large Market Setting

2. What if 𝒟 does not depend on 𝑛?

Large Market Setting: fixed common 𝒟 and 𝑛 → ∞

Asymptotic Competitive Ratio (ACR)

𝐴𝐶𝑅𝑀𝑎𝑥 = lim
𝑛→∞

𝔼[𝐴𝐿𝐺(𝑛)]
𝔼[max𝑛

𝑖=1 𝑋𝑖]
𝐴𝐶𝑅𝑀𝑖𝑛 = lim

𝑛→∞
𝔼[𝐴𝐿𝐺(𝑛)]

𝔼[min𝑛
𝑖=1 𝑋𝑖]
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Towards A Unified Analysis

▶ 𝐴𝐶𝑅𝑀𝑖𝑛 = O (1) for special cases of 𝒟
[L., Mehta ’24]

Need more holistic approach
▶ 𝑀𝑛 = max {𝑋1, … , 𝑋𝑛}
▶ 𝑚𝑛 = min {𝑋1, … , 𝑋𝑛}
▶ Distribution of 𝑀𝑛, 𝑚𝑛 as 𝑛 → ∞?
▶ lim𝑛→∞ 𝑀𝑛 = +∞, lim𝑛→∞ 𝑚𝑛 = 0 ⟹ Re-scaling
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Main Tool: Extreme Value Theory

Extreme Value Theorem [Fisher, Tippett ’28, Gnedenko ’43]
Assume there exist sequences 𝑎𝑛 > 0, 𝑏𝑛 ∈ ℝ such that

lim
𝑛→∞

𝐹𝑀𝑛
(𝑎𝑛𝑥 + 𝑏𝑛) = 𝐺+

𝛾 (𝑥)

Then,

𝐺+
𝛾 (𝑥) = {exp (−(1 + 𝛾𝑥)−1/𝛾) , if 𝛾 ≠ 0

exp (− exp (−𝑥)) , if 𝛾 = 0
and we say that 𝒟 follows EVT

▶
▶
▶
▶
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▶ 𝐺 : Extreme Value Distribution, 𝛾 : Extreme Value Index
▶ Three distinct 𝐺+

𝛾 ’s:
▶ 𝛾 > 0: Fréchet
▶ 𝛾 = 0: Gumbel
▶ 𝛾 < 0: Reverse Weibull

▶
▶
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▶ Central Limit Theorem analogue for Max
▶ Can get similar result for Min, but 𝛾, 𝐺−

𝛾 changes
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Fréchet, Gumbel and Rev. Weibull

▶ 𝛾 > 0: Fréchet

lim
𝑥→∞

1 − 𝐺+
𝛾 (𝑥) ∼ 1

(𝛾𝑥)1/𝛾

Heavy tails, ∄ moments of order 1/𝛾 and above
Examples: Cauchy, Pareto, Equal-Revenue, …

▶ 𝛾 = 0: Gumbel

lim
𝑥→∞

1 − 𝐺+
0 (𝑥) ∼ 𝑒−𝑥.

Light tail, exponential-like behaviour
Examples: Gaussian, Exponential, Gamma, …

▶ 𝛾 < 0: Reverse Weibull
Necessarily bounded support, short tail
Examples: Uniform, Beta, …

10 / 18

𝐺+𝛾(𝑥) = {exp (−(1 + 𝛾𝑥)−1/𝛾) , if 𝛾 ≠ 0
exp (− exp (−𝑥)) , if 𝛾 = 0



Comparison with CLT

Central Limit Theorem
For a 𝒟 with mean 𝜇 and variance 𝜎2, let 𝑎𝑛 =

√
𝑛𝜎2 and

𝑏𝑛 = 𝑛𝜇. If 𝜇, 𝜎2 < +∞, then

lim
𝑛→∞

∑𝑛
𝑖=1 𝑋𝑖 − 𝑏𝑛

𝑎𝑛
= 𝑌 ∼ 𝒩 (0, 1)

Extreme Value Theorem
For a 𝒟 with cdf 𝐹 , let 𝑏𝑛 = (1/(1 − 𝐹))← (𝑛), 𝑎𝑛 = 1/(𝑛𝑓(𝑏𝑛)).
If

lim
𝑛→∞

max {𝑋1, … , 𝑋𝑛} − 𝑏𝑛
𝑎𝑛

= 𝑌

exists, then 𝑌 ∼ 𝐺+
𝛾 (𝑥)
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IID PI via Extreme Value Theory

Theorem
Assume there exist sequences 𝑎𝑛 > 0, 𝑏𝑛 ∈ ℝ such that

lim
𝑛→∞

𝐹𝑀𝑛
(𝑎𝑛𝑥 + 𝑏𝑛) = 𝐺+

𝛾 (𝑥)

for some 𝛾

lim
𝑛→∞

𝐹𝑚𝑛
(𝑎𝑛𝑥 + 𝑏𝑛) = 𝐺−

𝛾 (𝑥)

for some 𝛾

Then, the optimal algorithm achieves a competitive ratio, as
𝑛 → ∞
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𝐴𝐶𝑅𝑀𝑎𝑥 = min {(1 − 𝛾)−𝛾

Γ (1 − 𝛾) , 1}

[Kennedy, Kertz ’91]
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Γ(𝑥) = (𝑥 − 1)!
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▶ Distribution-optimal closed form
▶ Unified analysis of competitive ratio for both Max and Min
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Γ(𝑥) = (𝑥 − 1)!



Asymptotic Competitive Ratio

For 𝛾 → −∞, by Stirling’s approximation

(1 − 𝛾)−𝛾

Γ(1 − 𝛾) ≈ 𝑒−𝛾
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Asymptotic Competitive Ratio

Figure: ACR(𝛾) for Max Figure: ACR(𝛾) for Min
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High-Level Approach

𝐹(𝑡) = Pr𝑋∼𝒟[𝑋 ≤ 𝑡]
𝐹 ←(𝑝) ∶ Inverse of 𝐹 (“Quantile function”)

Using EVT and heavy-machinery from theory of regularly-varying
functions:

Max

𝔼[𝐴𝐿𝐺(𝑛)] ≈ 𝐹 ← (1 − 1 − 𝛾
𝑛 )

𝔼 [𝑀𝑛] ≈ Γ(1 − 𝛾) 𝐹 ← (1 − 1
𝑛)

𝐹 ← (1 − 𝑐
𝑛) ≈ 𝑐−𝛾 𝐹 ← (1 − 1

𝑛)

Min

𝔼[𝐴𝐿𝐺(𝑛)] ≈ 𝐹 ← (1 − 𝛾
𝑛 )

𝔼 [𝑚𝑛] ≈ Γ(1 − 𝛾) 𝐹 ← ( 1
𝑛)

𝐹 ← ( 𝑐
𝑛) ≈ 𝑐−𝛾 𝐹 ← ( 1

𝑛)
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High-Level Approach
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Single-Threshold and Cardinality Constraints

Theorem
If 𝒟 satisfies the EVT, then ∃ single threshold 𝑇 s.t.

𝐴𝐶𝑅𝑀𝑎𝑥(𝑇 ) = 𝑔(𝛾) = Ω (1)

[Correa, Pizarro, Verdugo ’21]

𝐴𝐶𝑅𝑀𝑖𝑛(𝑇 ) = O ((log 𝑛)−𝛾)

[L., Mehta ’25]

Theorem [L., Mehta ’25]
If 𝒟 satisfies the EVT, then, for 𝑘 = Ω (log 𝑛), ∃ a threshold 𝑇𝑘
achieving a competitive ratio

𝐴𝐶𝑅𝑀𝑖𝑛(𝑇𝑘) = 𝑒−𝛾(1−𝛾)
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Open Problems

▶ Are there 𝒟𝑖 for which we can get constant approximation in
the non-IID setting?

▶ What can you get with 1 < 𝑘 < 𝑛 thresholds?
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Thank You!

Questions?
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