

Minimization IID Prophet Inequality via Extreme Value Theory: A Unified Approach

Vasilis Livanos

Center for Mathematical Modeling (CMM), Santiago, Chile

Joint work with

Ruta Mehta, UIUC

July 7th, 2025

Prophet Inequality

[Krengel, Sucheston, Garling '77]

$X_1, X_2, \dots, X_n \sim$ (known) $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_n$
arrive in *adversarial* order

Prophet Inequality

[Krengel, Sucheston, Garling '77]

$X_1, X_2, \dots, X_n \sim$ (known) $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_n$
arrive in *adversarial* order

- ▶ Design *stopping time* to maximize selected value
- ▶ Compare against all-knowing *prophet*: $\mathbb{E}[\max_i X_i]$
- ▶ Competitive Ratio:

$$\frac{\mathbb{E}[ALG]}{\mathbb{E}[\max_i X_i]}$$

$$U[10, 11]$$
$$U[9, 12]$$
$$U[7, 14]$$
$$\begin{cases} 1000 & \text{w.p. } 1/100 \\ 0 & \text{otherwise} \end{cases}$$

$$U[10, 11]$$
$$U[9, 12]$$
$$U[7, 14]$$
$$\begin{cases} 1000 & \text{w.p. } 1/100 \\ 0 & \text{otherwise} \end{cases}$$

$$X_1 = 10.30$$

$$U[10, 11]$$
$$U[9, 12]$$
$$U[7, 14]$$
$$\begin{cases} 1000 & \text{w.p. } 1/100 \\ 0 & \text{otherwise} \end{cases}$$

$$X_1 = 10.30$$

$$X_2 = 9.54$$

$$U[10, 11]$$
$$U[9, 12]$$
$$U[7, 14]$$
$$\begin{cases} 1000 & \text{w.p. } 1/100 \\ 0 & \text{otherwise} \end{cases}$$

$$X_1 = 10.30$$

$$X_2 = 9.54$$

$$X_3 = 8.14$$

$$U[10, 11]$$
$$U[9, 12]$$
$$U[7, 14]$$
$$\begin{cases} 1000 & \text{w.p. } 1/100 \\ 0 & \text{otherwise} \end{cases}$$

$$X_1 = 10.30$$

$$X_2 = 9.54$$

$$X_3 = 8.14$$

$$X_4 = 0$$

Prophet Inequality [Krengel, Sucheston, Garling '77, '78]

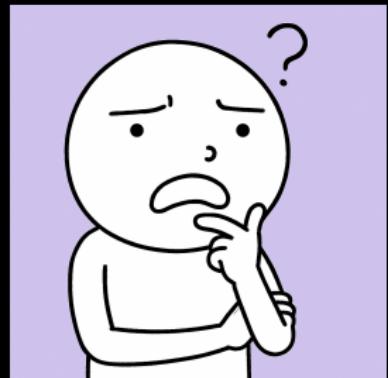
\exists stopping strategy that achieves $\frac{1}{2} \cdot \mathbb{E}[\max_i X_i]$,
and this is tight

Prophet Inequality [Krengel, Sucheston, Garling '77, '78]

\exists stopping strategy that achieves $1/2 \cdot \mathbb{E}[\max_i X_i]$,
and this is tight

- ▶ Idea: Set *threshold* T , accept first $X_i \geq T$
 - ▶ $T : \Pr[\max_i X_i \geq T] = 1/2$ works
[Samuel-Cahn '84]
 - ▶ $T = 1/2 \cdot \mathbb{E}[\max_i X_i]$ works
[Wittmann '95, Kleinberg and Weinberg '12]

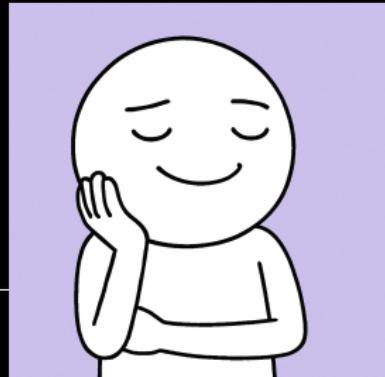
1. When can we get better guarantees?
Can $1/2$ be improved?



1. When can we get better guarantees?
Can $1/2$ be improved?
2. What if $\mathcal{D}_1 = \mathcal{D}_2 = \dots = \mathcal{D}_n = \mathcal{D}$?
3. Worst-case \mathcal{D} ?



1. When can we get better guarantees?
Can $1/2$ be improved?
2. What if $\mathcal{D}_1 = \mathcal{D}_2 = \dots = \mathcal{D}_n = \mathcal{D}$?
3. Worst-case \mathcal{D} ?



IID Prophet Inequality [Hill, Kertz '82,
Correa, Fonseca, Hoeksma, Oosterwijk and Vredeveld '21]

For any \mathcal{D} , \exists threshold stopping strategy $\tau_1, \tau_2, \dots, \tau_n$ that achieves $\beta \cdot \mathbb{E}[\max_i X_i]$, where $\beta \approx 0.745$, and this is tight

Worst-case \mathcal{D} : High variance – depends on n
Most of the mass is at 0 – low probability of getting high values

Minimization

1. Is MIN similar to MAX?
2. Required to select a value

Minimization

1. Is MIN similar to MAX?
2. Required to select a value

► No hope for universal bound: [Lucier '22]

$\mathcal{D} : F(x) = 1 - 1/x$, with $x \in [1, +\infty)$
(Equal-revenue distribution)

$$\mathbb{E}[X] = 1 + \int_1^\infty (1 - F(x)) dx = +\infty, \text{ but}$$

$$\mathbb{E}[\min\{X_1, X_2\}] = 1 + \int_1^\infty (1 - F(x))^2 dx < +\infty$$

Large Market Setting

2. What if \mathcal{D} does not depend on n ?

Large Market Setting

2. What if \mathcal{D} does not depend on n ?

Large Market Setting: fixed common \mathcal{D} and $n \rightarrow \infty$

Large Market Setting

2. What if \mathcal{D} does not depend on n ?

Large Market Setting: fixed common \mathcal{D} and $n \rightarrow \infty$

Asymptotic Competitive Ratio (ACR)

$$ACR_{Max} = \lim_{n \rightarrow \infty} \frac{\mathbb{E}[ALG(n)]}{\mathbb{E}[\max_{i=1}^n X_i]} \quad ACR_{Min} = \lim_{n \rightarrow \infty} \frac{\mathbb{E}[ALG(n)]}{\mathbb{E}[\min_{i=1}^n X_i]}$$

Towards A Unified Analysis

- ▶ $ACR_{Min} = O(1)$ for special cases of \mathcal{D}
[L., Mehta '24]

Towards A Unified Analysis

- ▶ $ACR_{Min} = O(1)$ for special cases of \mathcal{D}
[L., Mehta '24]

Need more holistic approach

- ▶ $M_n = \max \{X_1, \dots, X_n\}$
- ▶ $m_n = \min \{X_1, \dots, X_n\}$
- ▶ Distribution of M_n, m_n as $n \rightarrow \infty$?

Towards A Unified Analysis

- ▶ $ACR_{Min} = O(1)$ for special cases of \mathcal{D}
[L., Mehta '24]

Need more holistic approach

- ▶ $M_n = \max \{X_1, \dots, X_n\}$
- ▶ $m_n = \min \{X_1, \dots, X_n\}$
- ▶ Distribution of M_n, m_n as $n \rightarrow \infty$?
- ▶ $\lim_{n \rightarrow \infty} M_n = +\infty, \quad \lim_{n \rightarrow \infty} m_n = 0 \implies$ Re-scaling

Main Tool: Extreme Value Theory

Extreme Value Theorem [Fisher, Tippett '28, Gnedenko '43]

Assume there exist sequences $a_n > 0, b_n \in \mathbb{R}$ such that

$$\lim_{n \rightarrow \infty} F_{M_n}(a_n x + b_n) = G_\gamma^+(x)$$

Then,

$$G_\gamma^+(x) = \begin{cases} \exp(-(1 + \gamma x)^{-1/\gamma}), & \text{if } \gamma \neq 0 \\ \exp(-\exp(-x)), & \text{if } \gamma = 0 \end{cases}$$

and we say that \mathcal{D} follows EVT

Main Tool: Extreme Value Theory

Extreme Value Theorem [Fisher, Tippett '28, Gnedenko '43]

Assume there exist sequences $a_n > 0, b_n \in \mathbb{R}$ such that

$$\lim_{n \rightarrow \infty} F_{M_n}(a_n x + b_n) = G_\gamma^+(x)$$

Then,

$$G_\gamma^+(x) = \begin{cases} \exp(-(1 + \gamma x)^{-1/\gamma}), & \text{if } \gamma \neq 0 \\ \exp(-\exp(-x)), & \text{if } \gamma = 0 \end{cases}$$

and we say that \mathcal{D} follows EVT

- ▶ G : Extreme Value Distribution, γ : Extreme Value Index
- ▶ Three distinct G_γ^+ 's:
 - ▶ $\gamma > 0$: Fréchet
 - ▶ $\gamma = 0$: Gumbel
 - ▶ $\gamma < 0$: Reverse Weibull

Main Tool: Extreme Value Theory

Extreme Value Theorem [Fisher, Tippett '28, Gnedenko '43]

Assume there exist sequences $a_n > 0, b_n \in \mathbb{R}$ such that

$$\lim_{n \rightarrow \infty} F_{M_n}(a_n x + b_n) = G_\gamma^+(x)$$

Then,

$$G_\gamma^+(x) = \begin{cases} \exp(-(1 + \gamma x)^{-1/\gamma}), & \text{if } \gamma \neq 0 \\ \exp(-\exp(-x)), & \text{if } \gamma = 0 \end{cases}$$

and we say that \mathcal{D} follows EVT

- ▶ G : Extreme Value Distribution, γ : Extreme Value Index
- ▶ Three distinct G_γ^+ 's: $\gamma < 0, \gamma = 0, \gamma > 0$
- ▶ Central Limit Theorem analogue for MAX
- ▶ Can get similar result for MIN, but γ, G_γ^- changes

Fréchet, Gumbel and Rev. Weibull

- ▶ $\gamma > 0$: Fréchet

$$G_{\gamma}^{+}(x) = \begin{cases} \exp(-(1+\gamma x)^{-1/\gamma}), & \text{if } \gamma \neq 0 \\ \exp(-\exp(-x)), & \text{if } \gamma = 0 \end{cases}$$

$$\lim_{x \rightarrow \infty} 1 - G_{\gamma}^{+}(x) \sim \frac{1}{(\gamma x)^{1/\gamma}}$$

Heavy tails, \nexists moments of order $1/\gamma$ and above

Examples: Cauchy, Pareto, Equal-Revenue, ...

- ▶ $\gamma = 0$: Gumbel

$$\lim_{x \rightarrow \infty} 1 - G_0^{+}(x) \sim e^{-x}.$$

Light tail, exponential-like behaviour

Examples: Gaussian, Exponential, Gamma, ...

- ▶ $\gamma < 0$: Reverse Weibull

Necessarily bounded support, short tail

Examples: Uniform, Beta, ...

Comparison with CLT

Central Limit Theorem

For a \mathcal{D} with mean μ and variance σ^2 , let $a_n = \sqrt{n\sigma^2}$ and $b_n = n\mu$. If $\mu, \sigma^2 < +\infty$, then

$$\lim_{n \rightarrow \infty} \frac{\sum_{i=1}^n X_i - b_n}{a_n} = Y \sim \mathcal{N}(0, 1)$$

Comparison with CLT

Central Limit Theorem

For a \mathcal{D} with mean μ and variance σ^2 , let $a_n = \sqrt{n\sigma^2}$ and $b_n = n\mu$. If $\mu, \sigma^2 < +\infty$, then

$$\lim_{n \rightarrow \infty} \frac{\sum_{i=1}^n X_i - b_n}{a_n} = Y \sim \mathcal{N}(0, 1)$$

Extreme Value Theorem

For a \mathcal{D} with cdf F , let $b_n = (1/(1 - F))^\leftarrow(n)$, $a_n = 1/(nf(b_n))$.

If

$$\lim_{n \rightarrow \infty} \frac{\max \{X_1, \dots, X_n\} - b_n}{a_n} = Y$$

exists, then $Y \sim G_\gamma^+(x)$

IID PI via Extreme Value Theory

Theorem

Assume there exist sequences $a_n > 0, b_n \in \mathbb{R}$ such that

$$\lim_{n \rightarrow \infty} F_{M_n}(a_n x + b_n) = G_\gamma^+(x)$$

for some γ

$$\lim_{n \rightarrow \infty} F_{m_n}(a_n x + b_n) = G_\gamma^-(x)$$

for some γ

IID PI via Extreme Value Theory

$$\boxed{\Gamma(x) = (x-1)!}$$

Theorem

Assume there exist sequences $a_n > 0, b_n \in \mathbb{R}$ such that

$$\lim_{n \rightarrow \infty} F_{M_n}(a_n x + b_n) = G_\gamma^+(x)$$

for some γ

$$\lim_{n \rightarrow \infty} F_{m_n}(a_n x + b_n) = G_\gamma^-(x)$$

for some γ

Then, the optimal algorithm achieves a competitive ratio, as
 $n \rightarrow \infty$

$$ACR_{Max} = \min \left\{ \frac{(1-\gamma)^{-\gamma}}{\Gamma(1-\gamma)}, 1 \right\}$$

[Kennedy, Kertz '91]

IID PI via Extreme Value Theory

$$\boxed{\Gamma(x) = (x-1)!}$$

Theorem

Assume there exist sequences $a_n > 0, b_n \in \mathbb{R}$ such that

$$\lim_{n \rightarrow \infty} F_{M_n}(a_n x + b_n) = G_\gamma^+(x)$$

for some γ

$$\lim_{n \rightarrow \infty} F_{m_n}(a_n x + b_n) = G_\gamma^-(x)$$

for some γ

Then, the optimal algorithm achieves a competitive ratio, as

$$n \rightarrow \infty$$

$$ACR_{Max} = \min \left\{ \frac{(1-\gamma)^{-\gamma}}{\Gamma(1-\gamma)}, 1 \right\}$$

[Kennedy, Kertz '91]

$$ACR_{Min} = \max \left\{ \frac{(1-\gamma)^{-\gamma}}{\Gamma(1-\gamma)}, 1 \right\}$$

[L., Mehta '25]

IID PI via Extreme Value Theory

Theorem

$$\Gamma(x) = (x-1)!$$

Assume there exist sequences $a_n > 0, b_n \in \mathbb{R}$ such that

$$\lim_{n \rightarrow \infty} F_{M_n}(a_n x + b_n) = G_\gamma^+(x)$$

for some γ

$$\lim_{n \rightarrow \infty} F_{m_n}(a_n x + b_n) = G_\gamma^-(x)$$

for some γ

Then, the optimal algorithm achieves a competitive ratio, as
 $n \rightarrow \infty$

$$ACR_{Max} = \min \left\{ \frac{(1-\gamma)^{-\gamma}}{\Gamma(1-\gamma)}, 1 \right\}$$

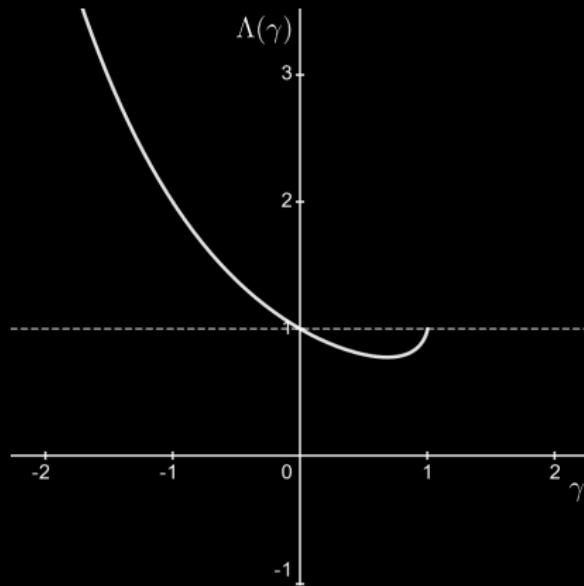
[Kennedy, Kertz '91]

$$ACR_{Min} = \max \left\{ \frac{(1-\gamma)^{-\gamma}}{\Gamma(1-\gamma)}, 1 \right\}$$

[L., Mehta '25]

- ▶ Distribution-optimal closed form
- ▶ Unified analysis of competitive ratio for both MAX and MIN

Asymptotic Competitive Ratio



For $\gamma \rightarrow -\infty$, by Stirling's approximation

$$\frac{(1 - \gamma)^{-\gamma}}{\Gamma(1 - \gamma)} \approx e^{-\gamma}$$

Asymptotic Competitive Ratio

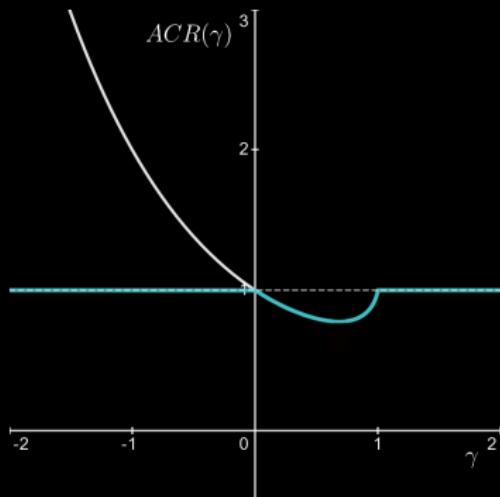


Figure: $ACR(\gamma)$ for MAX

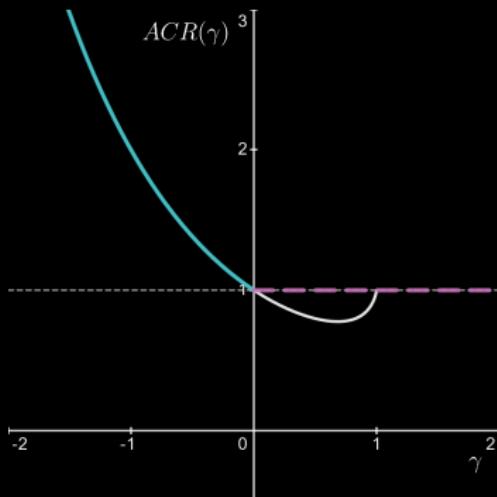


Figure: $ACR(\gamma)$ for MIN

High-Level Approach

$$F(t) = \Pr_{X \sim \mathcal{D}}[X \leq t]$$

$F^\leftarrow(p)$: Inverse of F ("Quantile function")

Using EVT and heavy-machinery from theory of regularly-varying functions:

MAX

MIN

High-Level Approach

$$F(t) = \Pr_{X \sim \mathcal{D}}[X \leq t]$$

$F^\leftarrow(p)$: Inverse of F ("Quantile function")

Using EVT and heavy-machinery from theory of regularly-varying functions:

$$\mathbb{E}[ALG(n)] \approx F^\leftarrow\left(1 - \frac{1 - \gamma}{n}\right)$$

$$\mathbb{E}[ALG(n)] \approx F^\leftarrow\left(\frac{1 - \gamma}{n}\right)$$

High-Level Approach

$$\boxed{\Gamma(x) = (x-1)!}$$

$$F(t) = \Pr_{X \sim \mathcal{D}}[X \leq t]$$

$F^\leftarrow(p)$: Inverse of F (“Quantile function”)

Using EVT and heavy-machinery from theory of regularly-varying functions:

$$\mathbb{E}[ALG(n)] \approx F^\leftarrow\left(1 - \frac{1-\gamma}{n}\right)$$

$$\mathbb{E}[M_n] \approx \Gamma(1-\gamma) F^\leftarrow\left(1 - \frac{1}{n}\right)$$

$$\mathbb{E}[ALG(n)] \approx F^\leftarrow\left(\frac{1-\gamma}{n}\right)$$

$$\mathbb{E}[m_n] \approx \Gamma(1-\gamma) F^\leftarrow\left(\frac{1}{n}\right)$$

High-Level Approach

$$\boxed{\Gamma(x) = (x-1)!}$$

$$F(t) = \Pr_{X \sim \mathcal{D}}[X \leq t]$$

$F^\leftarrow(p)$: Inverse of F (“Quantile function”)

Using EVT and heavy-machinery from theory of regularly-varying functions:

$$\mathbb{E}[ALG(n)] \approx F^\leftarrow \left(1 - \frac{1-\gamma}{n} \right)$$

$$\mathbb{E}[M_n] \approx \Gamma(1-\gamma) F^\leftarrow \left(1 - \frac{1}{n} \right)$$

$$F^\leftarrow \left(1 - \frac{c}{n} \right) \approx c^{-\gamma} F^\leftarrow \left(1 - \frac{1}{n} \right)$$

$$\mathbb{E}[ALG(n)] \approx F^\leftarrow \left(\frac{1-\gamma}{n} \right)$$

$$\mathbb{E}[m_n] \approx \Gamma(1-\gamma) F^\leftarrow \left(\frac{1}{n} \right)$$

$$F^\leftarrow \left(\frac{c}{n} \right) \approx c^{-\gamma} F^\leftarrow \left(\frac{1}{n} \right)$$

Single-Threshold and Cardinality Constraints

Theorem

If \mathcal{D} satisfies the EVT, then \exists single threshold T s.t.

$$ACR_{Max}(T) = g(\gamma) = \Omega(1)$$

[Correa, Pizarro, Verdugo '21]

$$ACR_{Min}(T) = O((\log n)^{-\gamma})$$

[L., Mehta '25]

Theorem [L., Mehta '25]

If \mathcal{D} satisfies the EVT, then, for $k = \Omega(\log n)$, \exists a threshold T_k achieving a competitive ratio

$$ACR_{Min}(T_k) = e^{-\gamma(1-\gamma)}$$

Open Problems

- ▶ Are there \mathcal{D}_i for which we can get constant approximation in the non-IID setting?
- ▶ What can you get with $1 < k < n$ thresholds?

Thank You!

Questions?

