Vasilis Livanos

Center for Mathematical Modeling (CMM), Santiago, Chile

Joint work with

Ruta Mehta, UIUC

July 7th, 2025

1/18



[Krengel, Sucheston, Garling '77]

X15X2’ cee 7X1’l ~/ (knOWI‘l) Dl’ DQ, ey Dn
arrive in adversarial order

2/18



[Krengel, Sucheston, Garling '77]

X15X2’ cee ,X,n ~/ (knOWI'I) Dl’ DQ, ces 7D7’l
arrive in adversarial order

P> Design stopping time to maximize selected value
P Compare against all-knowing prophet: E[max; X;,]

P Competitive Ratio:
FIALG]

E[max; X]
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U[7,14]

{

1000 w.p. 1/100

0 otherwise
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Prophet Inequality [Krengel, Sucheston, Garling '77, '78]

3 stopping strategy that achieves 1/2 - E[max; X;],
and this is tight
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Prophet Inequality [Krengel, Sucheston, Garling '77, '78]

3 stopping strategy that achieves 1/2 - E[max; X;],
and this is tight

P> Idea: Set threshold T, accept first X, >T

P T :Pr[max; X; > T| = 1/2 works
[Samuel-Cahn '84]

P T =1/2- E[max; X,] works
[Wittmann '95, Kleinberg and Weinberg '12]

4/18



1. When can we get better guarantees?
Can 1/2 be improved?
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1. When can we get better guarantees?
Can 1/2 be improved?

3. Worst-case D?

IID Prophet Inequality [Hill, Kertz '82,
Correa, Foncea, Hoeksma, Oosterwijk and Vredeveld '21]

For any 2, 3 threshold stopping strategy 7,7y, ..., 7,, that
achieves (- E[max; X,|, where  ~ 0.745, and this is tight

Worst-case 2: High variance — depends on n
Most of the mass is at 0 — low probability of getting high values
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1. Is MIN similar to MAX?

2. Required to select a value
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1. Is MIN similar to MAX?

2. Required to select a value

P No hope for universal bound: [Lucier '22]

D:F(x)=1—1/z with x € [1,+00)
(Equal-revenue distribution)

E[X] =1+ [~ (1 - F(z))dr = +oo, but

Elmin{X,, Xo}] = 1+ [~ (1 - F(2))"dz < +00
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2. What if 2 does not depend on n?
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Large Market Setting: fixed common 2 and n — oo
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2. What if 2 does not depend on n?

Large Market Setting: fixed common 2 and n — oo

Asymptotic Competitive Ratio (ACR)

ACRy,, — lim FALGO]

n—oo E[min;_, Xj]

ACR,,,. = lim HAEGM]L

w20 Elmax], X
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» ACR,;;,, = O (1) for special cases of D
[L., Mehta '24]
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P Distribution of M,
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» ACR,;;,, = O (1) for special cases of D
[L., Mehta '24]
Need more holistic approach
» M, =max{X,,..,X,}
» m, =min{X,..,X,}
P Distribution of M,,,

P lim, .. M, =+oc0, lim

m,, as n — oo?

m, =0 = Re-scaling

n—oo
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Extreme Value Theorem [Fisher, Tippett '28, Gnedenko '43]

Assume there exist sequences a,, > 0,0,, € R such that

lim Fy, (a,z +b,) =G5 (z)

n—oo v

Then,

Y

() = exp(—(l—l—’y:c)_l/”), ifv+0
¢ (@) {exp(—exp(—m)), ify=0

and we say that 2 follows EVT
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Extreme Value Theorem [Fisher, Tippett '28, Gnedenko '43]

Assume there exist sequences a,, > 0,b,, € R such that

lim Py (a,2+b,) = G5 (2)
Then, 1

ci-{m e i
and we say that 2 follows EVT

P G : Extreme Value Distribution, v : Extreme Value Index
P Three distinct Gi's:

P ~ > 0: Fréchet

P~ =0: Gumbel

P~ < 0: Reverse Weibull
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Extreme Value Theorem [Fisher, Tippett '28, Gnedenko '43]

Assume there exist sequences a,, > 0,0,, € R such that

lim Fy, (a,z+b,) =G5 (z)

n—,oo 2

Then,

Y

—1 .
() = 4 P (=1 +z)~), ity #0
exp (—exp (—z)), ify=0
and we say that D follows EVT
P G : Extreme Value Distribution, v : Extreme Value Index
P Three distinct G7's: 7<0, =0, v>0
P Central Limit Theorem analogue for MAX
» Can get similar result for MIN, but , G, changes
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G;(z) _ {exp (7(1 + 'yz)*l/"’) , ify#0

exp (—exp (—x)), ify=0

P v > 0: Fréchet

1
D
T @~ T

Heavy tails, Z moments of order 1/~ and above
Examples: Cauchy, Pareto, Equal-Revenue, ...

P v =0: Gumbel

3 (Yt ~
mll)rgol Gi(x) ~e™.

Light tail, exponential-like behaviour
Examples: Gaussian, Exponential, Gamma, ...

P ~ < 0: Reverse Weibull
Necessarily bounded support, short tail
Examples: Uniform, Beta, ...
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Central Limit Theorem

For a 2 with mean p and variance o2, let a,, = Vno? and
b, = nu. If u,0% < 400, then

"X —b
lim —21:1 L L

n—00 a,,

Y ~ N (0,1)
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Central Limit Theorem

For a 2 with mean p and variance o2, let a,, = Vno? and
b, = nu. If u,0% < 400, then

"X —b
lim —21:1 L L

n—00 a,,

Y ~ N (0,1)

Extreme Value Theorem

For a D with cdf F, let b, = (1/(1—F))" (n), a,, = 1/(nf(b,)).

If
iy HAX {X;,...X,,} —b,

n—00 a

=Y

n

exists, then Y ~ G (z)
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Theorem

Assume there exist sequences a,, > 0,b,, € R such that

lim Fy, (a,r+b,) =Gl (2) lim F,, (a,r+b,) =G, ()

n—00 v n—00 n

for some ~y for some
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I(z) = (z—1)!
Theorem | |
Assume there exist sequences a,, > 0,b,, € R such that

for some ~ for some ~

Then, the optimal algorithm achieves a competitive ratio, as
n — oo

— )Y
ACR,,, = min {&, 1}

[Kennedy, Kertz '91]
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D)= (z—1)!]

Theorem

Assume there exist sequences a,, > 0,b,, € R such that

lim Fy, (a,r+b,) = G7(z) lim F, (a,z+b,)=G(v)

n—00 v n— oo n

for some ~ for some ~

Then, the optimal algorithm achieves a competitive ratio, as
n — oo

AC R =min{ 720 ACR g = { 1720

[Kennedy, Kertz '91] [L., Mehta '25]
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Theorem |I‘(ac) =(z—1)! |

Assume there exist sequences a,, > 0,0,, € R such that

nlgg() Fy (a,x +b,) =Gl (2) nlgg() F, (a,z+b,) =G, ()
for some for some ~
Then, the optimal algorithm achieves a competitive ratio, as
n — 00
ACR 0, :min{%,l} ACR i, :max{%,l}
[Kennedy, Kertz '91] [L., Mehta '25]

P Distribution-optimal closed form

P> Unified analysis of competitive ratio for both MAX and MIN
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-1

For v — —o0, by Stirling’s approximation

A=

~
~

L(1—7)
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ACR(y)® ACR(v)?
2 2
2 1 [ 1 o 2 2 1 0 1 2
Y g
Figure: ACR(7y) for Max Figure: ACR(7y) for MIN
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F(t) =Pryx._p[X < ]
F<(p) : Inverse of F' (“Quantile function™)

Using EVT and heavy-machinery from theory of regularly-varying
functions:

Max MIN

15/18



F(t) =Pryx._p[X < ]
F<(p) : Inverse of F' (“Quantile function™)

Using EVT and heavy-machinery from theory of regularly-varying
functions:

Max MiIN
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T(z) = (z—1)!]

F(t) =Pryx._p[X < ]
F<(p) : Inverse of F' (“Quantile function™)

Using EVT and heavy-machinery from theory of regularly-varying
functions:

Max MiIN

E[ALG(n)] ~ F* (1 - 7) F[ALG(n)] ~ F© (1_77)

)=t p (1) emara s £ ()
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F(t) =Prx. p[X <]

T(@) = (z—1)!]

F<(p) : Inverse of F' (“Quantile function™)

Using EVT and heavy-machinery from theory of regularly-varying

functions:
Max

E[ALG(n)] ~ F© (1 1= v)

F[M,] ~T(1—v) F*© (1 _ l)

1
g e ()
n n

MiN
E[ALG(n)] ~ F© (1_77>

E[m,] ~T(1—~) F*© (%)
(@) ()
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Theorem
If D satisfies the EVT, then 3 single threshold T s.t.

ACR o, (T) = g(v) = Q(1) ACRy;,,(T) = O ((logn) )

[Correa, Pizarro, Verdugo '21] [L., Mehta '25]

Theorem [L., Mehta '25]

If D satisfies the EVT, then, for k = Q (logn), 3 a threshold T,
achieving a competitive ratio

ACR ., (T),) = e~ 1=
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P Are there D, for which we can get constant approximation in
the non-lID setting?

P What can you get with 1 < k < n thresholds?
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Questions?
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