Prophet Inequalities with Oracle Calls and why they're useful

Vasilis Livanos

University of Chile

April 17th, 2024

Prophet Inequality

 $\text{Observe realizations} \quad X_1, X_2, \ldots, X_n \sim \text{(known)} \ \mathcal{D}_1, \mathcal{D}_2, \ldots, \mathcal{D}_n.$

- **Order** is *adversarial*.
- Design algorithm to maximize selected value.
- Compare against all-knowing *prophet*.

$$\blacktriangleright \ \text{If} \ \mathcal{D}_1 = \mathcal{D}_2 = \dots = \mathcal{D}_n \implies \text{IID setting}.$$

Prophet Inequality

 $\text{Observe realizations} \ \ X_1, X_2, \ldots, X_n \sim \text{(known)} \ \mathcal{D}_1, \mathcal{D}_2, \ldots, \mathcal{D}_n.$

Order is adversarial.

Design algorithm to maximize selected value.

Compare against all-knowing *prophet*.

$$\blacktriangleright \ \text{If} \ \mathcal{D}_1 = \mathcal{D}_2 = \dots = \mathcal{D}_n \implies \text{IID setting}.$$

Objectives:

Competitive Ratio (CR or "Prophet Objective"):

 $\frac{\mathbb{E}\left[ALG\right]}{\mathbb{E}\left[\max_{i}X_{i}\right]}$

Prophet Inequality

 $\text{Observe realizations} \ \ X_1, X_2, \ldots, X_n \sim \text{(known)} \ \mathcal{D}_1, \mathcal{D}_2, \ldots, \mathcal{D}_n.$

Order is *adversarial*.

Design algorithm to maximize selected value.

Compare against all-knowing *prophet*.

If
$$\mathcal{D}_1 = \mathcal{D}_2 = \dots = \mathcal{D}_n \implies$$
 IID setting.

Objectives:

Competitive Ratio (CR or "Prophet Objective"):

 $\frac{\mathbb{E}\left[ALG\right]}{\mathbb{E}\left[\max_{i}X_{i}\right]}$

Probability of Selecting Maximum Realization (PMax or "Secretary Objective"):

$$\Pr\left[ALG \text{ selects } \max_i X_i\right]$$

Prophet Objective [Krengel, Sucheston, Garling '77, '78]

 \exists stopping strategy that achieves ${}^1\!/{}_2 \cdot \mathop{\mathbb{E}}[\max_i X_i]$, and this is tight.

Secretary Objective [Esfandiari, HajiAghayi, Lucier, Mitzenmacher '20]

 \exists stopping strategy that selects $\max_i X_i$ with probability at least $^{1\!/e\!}$, and this is tight.

Prophet Objective [Krengel, Sucheston, Garling '77, '78]

 \exists stopping strategy that achieves ${}^1\!/{}_2 \cdot \mathop{\mathbb{E}}[\max_i X_i]$, and this is tight.

Secretary Objective [Esfandiari, HajiAghayi, Lucier, Mitzenmacher '20]

 \exists stopping strategy that selects $\max_i X_i$ with probability at least $^{1\!/e\!}$, and this is tight.

• Idea: Set threshold T, accept first $X_i \ge T$.

Prophet Objective [Krengel, Sucheston, Garling '77, '78]

 \exists stopping strategy that achieves ${}^1\!/{}_2 \cdot \mathop{\mathbb{E}}[\max_i X_i]$, and this is tight.

Secretary Objective [Esfandiari, HajiAghayi, Lucier, Mitzenmacher '20]

 \exists stopping strategy that selects $\max_i X_i$ with probability at least $^{1\!/e\!}$, and this is tight.

• Idea: Set threshold T, accept first $X_i \ge T$.

CR: $Pr[max_i X_i \ge T] = 1/2$ [Samuel-Cahn '84]

Prophet Objective [Krengel, Sucheston, Garling '77, '78]

 \exists stopping strategy that achieves ${}^1\!/{}_2 \cdot \mathop{\mathbb{E}}[\max_i X_i]$, and this is tight.

Secretary Objective [Esfandiari, HajiAghayi, Lucier, Mitzenmacher '20]

 \exists stopping strategy that selects $\max_i X_i$ with probability at least $^{1\!/e\!}$, and this is tight.

• Idea: Set threshold
$$T$$
, accept first $X_i \ge T$.
CR: $\Pr[\max_i X_i \ge T] = 1/2$ [Samuel-Cahn '84
CR: $T = \frac{\mathbb{E}[\max_i X_i]}{2}$ [Kleinberg, Weinberg '12]

Prophet Objective [Krengel, Sucheston, Garling '77, '78]

 \exists stopping strategy that achieves ${}^1\!/{}_2 \cdot \mathop{\mathbb{E}}[\max_i X_i]$, and this is tight.

Secretary Objective [Esfandiari, HajiAghayi, Lucier, Mitzenmacher '20]

 \exists stopping strategy that selects $\max_i X_i$ with probability at least $^{1\!/e\!}$, and this is tight.

▶ Idea: Set threshold T, accept first
$$X_i \ge T$$
.
CR: $\Pr[\max_i X_i \ge T] = \frac{1}{2}$ [Samuel-Cahn '84]
CR: $T = \frac{\mathbb{E}[\max_i X_i]}{2}$ [Kleinberg, Weinberg '12]
PMax: $\Pr[\max_i X_i \ge T] = 1 - \frac{1}{e}$
[Esfandiari, HajiAghayi, Lucier, Mitzenmacher '20]

Competitive Ratio:

Non-IID: 1/2 [Krengel, Sucheston, Garling '77, '78]

Competitive Ratio:

Non-IID: 1/2 [Krengel, Sucheston, Garling '77, '78]

$\blacktriangleright \text{ IID:} \approx 0.745$

[Hill-Kertz '82, Correa, Foncea, Hoeksma, Oosterwijk and Vredeveld '21]]

Competitive Ratio:

Non-IID: 1/2[Krengel, Sucheston, Garling '77. '78]

\blacktriangleright IID: ≈ 0.745

[Hill-Kertz '82, Correa, Foncea, Hoeksma, Oosterwijk and Vredeveld '21]]

Secretary Objective:

Non-IID: 1/eEsfandiari, HajiAghayi, Lucier, Mitzenmacher '20]

Competitive Ratio:

Non-IID: 1/2 [Krengel, Sucheston, Garling '77, '78]

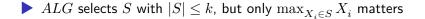
$\blacktriangleright \text{ IID:} \approx 0.745$

[Hill-Kertz '82, Correa, Foncea, Hoeksma, Oosterwijk and Vredeveld '21]]

Secretary Objective:

 Non-IID: ¹/e
 [Esfandiari, HajiAghayi, Lucier, Mitzenmacher '20]

▶ IID: ≈ 0.58 [Gilbert, Mosteller '66]



ALG selects S with $|S| \le k$, but only $\max_{X_i \in S} X_i$ matters

1966: $PMax \ge 1 - e^{-O(k)}$ for IID. [Gilbert, Mosteller '66]

ALG selects S with $|S| \le k$, but only $\max_{X_i \in S} X_i$ matters

1966: $PMax \ge 1 - e^{-O(k)}$ for IID. [Gilbert, Mosteller '66] 2000: $CR \ge 1 - \frac{1}{k+1}$ for Non-IID.

[Assaf, Samuel-Cahn '00]

ALG selects S with $|S| \le k$, but only $\max_{X_i \in S} X_i$ matters

```
1966: PMax \ge 1 - e^{-O(k)} for IID.
[Gilbert, Mosteller '66]
```

2000: $CR \ge 1 - \frac{1}{k+1}$ for Non-IID. [Assaf, Samuel-Cahn '00]

2002: CR: Numerical improvements for Non-IID, based on recursive function, but no asymptotic form. [Assaf, Goldstein, Samuel-Cahn '02]

ALG selects S with $|S| \le k$, but only $\max_{X_i \in S} X_i$ matters

```
1966: PMax \ge 1 - e^{-O(k)} for IID.
[Gilbert, Mosteller '66]
```

2000: $CR \ge 1 - \frac{1}{k+1}$ for Non-IID. [Assaf, Samuel-Cahn '00]

2002: CR: Numerical improvements for Non-IID, based on recursive function, but no asymptotic form. [Assaf, Goldstein, Samuel-Cahn '02]

2018: $1 - e^{-k/6} \leq \mathsf{CR} \leq 1 - k^{-2k}$ for Non-IID. [Ezra, Feldman, Nehama '18]

ALG selects S with $|S| \le k$, but only $\max_{X_i \in S} X_i$ matters

```
1966: PMax \ge 1 - e^{-O(k)} for IID.
[Gilbert, Mosteller '66]
```

2000: $CR \ge 1 - \frac{1}{k+1}$ for Non-IID. [Assaf, Samuel-Cahn '00]

2002: CR: Numerical improvements for Non-IID, based on recursive function, but no asymptotic form.[Assaf, Goldstein, Samuel-Cahn '02]

2018: $1 - e^{-k/6} \leq \mathsf{CR} \leq 1 - k^{-2k}$ for Non-IID. [Ezra, Feldman, Nehama '18]

Motivation: Auctions/Hiring with overbooking.

 $\mathcal{O}_k\colon$ Assume ALG has k calls to $\mathcal{O},$ who knows $X_1,\ldots,X_n.$

 $\underline{\mathcal{O}_k}: \text{ Assume } ALG \text{ has } k \text{ calls to } \mathcal{O} \text{, who knows } X_1, \dots, X_n.$

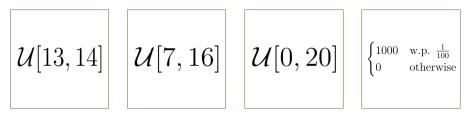
- **Step** *i*:
 - $X_i \ge \max_{j=i+1}^n X_j \Longrightarrow ALG \text{ selects } X_i$
 - $\blacktriangledown X_i < \max_{j=i+1}^n X_j \Longrightarrow ALG \text{ rejects } X_i$
- Generalization of standard PI.
- Allows for simpler analysis since ALG always selects one value.
- "Algorithms with predictions".

 $\underline{\mathcal{O}_k}: \text{ Assume } ALG \text{ has } k \text{ calls to } \mathcal{O} \text{, who knows } X_1, \dots, X_n.$

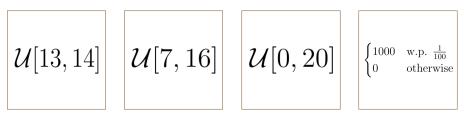
- $\underbrace{ \begin{array}{c} \textbf{Step } i : \\ \hline \bullet & X_i \geq \max_{j=i+1}^n X_j \Longrightarrow ALG \text{ selects } X_i \\ \hline \bullet & X_i < \max_{j=i+1}^n X_j \Longrightarrow ALG \text{ rejects } X_i \end{array} }$
- Generalization of standard PI.
- Allows for simpler analysis since ALG always selects one value.
- "Algorithms with predictions".
- Q.: Is \mathcal{O}_k equivalent to Top-1-of-(k+1)?

- $\underline{\mathcal{O}_k}: \text{ Assume } ALG \text{ has } k \text{ calls to } \mathcal{O} \text{, who knows } X_1, \dots, X_n.$
 - $\begin{array}{c|c} & \underline{\mathsf{Step}} \ i: \\ & \bullet & X_i \geq \max_{j=i+1}^n X_j \Longrightarrow ALG \text{ selects } X_i \\ & \bullet & X_i < \max_{j=i+1}^n X_j \Longrightarrow ALG \text{ rejects } X_i \end{array}$
 - Generalization of standard PI.
 - Allows for simpler analysis since ALG always selects one value.
 - "Algorithms with predictions".
 - Q.: Is \mathcal{O}_k equivalent to Top-1-of-(k+1)?
 - A.: YES and NO.

k = 1

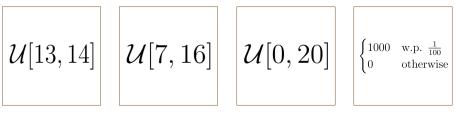


k = 1



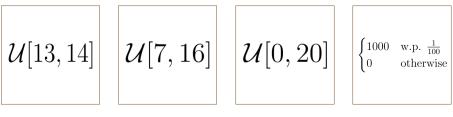
 $X_1 = 13.67$

k = 1



 $X_1 = 13.67$ $X_2 = 8.59$

k = 1

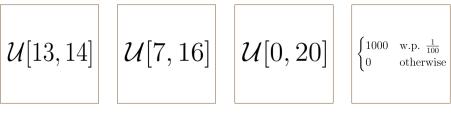


 $X_1 = 13.67$.

 $X_{2} = 8.59$

 $X_3 = 2.82$

k = 1



 $X_1 = 13.67 \qquad \qquad X_2 = 8.59 \qquad \qquad X_3 = 2.82 \qquad \qquad X_4 = 0$

$$\begin{split} & \mathbb{E}[\max{\{X_1, X_2, X_3, X_4\}}] \approx 24.66 \\ & \mathbb{E}[OPTALG{\{X_1, X_2, X_3, X_4\}} \text{ for } k = 0] \approx 13.37 \\ & \mathbb{E}[OPTALG{\{X_1, X_2, X_3, X_4\}} \text{ for } k = 1] \approx 19.9 \end{split}$$

Optimal strategy was to ignore X_1, X_2 and query at X_3 .

$\mathcal{O}_k \equiv \operatorname{Top-1-of-}(k+1)$ for PMax

Assume algorithm ${\mathcal A}$ for Top-1-of-(k+1).

 $\blacktriangleright X_i \to \mathcal{A}.$ If \mathcal{A} selects X_i , we use \mathcal{O} .

lf we're out of oracle calls, select X_i .

Assume algorithm $\mathcal A$ for Top-1-of-(k+1).

 \triangleright $X_i \to \mathcal{A}$. If \mathcal{A} selects X_i , we use \mathcal{O} .

lf we're out of oracle calls, select X_i .

 $\Pr[\mathsf{We \ select} \ \max_i X_i] = \Pr[\mathcal{A} \ \mathsf{selects} \ \max_i X_i].$

Assume algorithm ${\mathcal A}$ for Top-1-of-(k+1).

 \triangleright $X_i \to \mathcal{A}$. If \mathcal{A} selects X_i , we use \mathcal{O} .

lf we're out of oracle calls, select X_i .

 $\Pr[\mathsf{We \ select} \ \max_i X_i] = \Pr[\mathcal{A} \ \mathsf{selects} \ \max_i X_i].$

Assume algorithm \mathcal{B} for \mathcal{O}_k .

 \triangleright $X_i \to \mathcal{B}$. If \mathcal{B} expends oracle call or selects X_i , we select X_i .

Assume algorithm $\mathcal A$ for Top-1-of-(k+1).

 \triangleright $X_i \to \mathcal{A}$. If \mathcal{A} selects X_i , we use \mathcal{O} .

If we're out of oracle calls, select X_i .

 $\Pr[\mathsf{We \ select} \ \max_i X_i] = \Pr[\mathcal{A} \ \mathsf{selects} \ \max_i X_i].$

Assume algorithm \mathcal{B} for \mathcal{O}_k .

► $X_i \to \mathcal{B}$. If \mathcal{B} expends oracle call or selects X_i , we select X_i . $\Pr[\text{We select } \max_i X_i] = \Pr[\mathcal{B} \text{ selects } \max_i X_i].$

$\mathcal{O}_k \not\equiv \text{Top-1-of-}(k+1) \text{ for CR}$

 $\text{Guarantee } \alpha \text{ for } \mathcal{O}_k \implies \alpha \text{ for Top-1-of-}(k+1).$

$\mathcal{O}_k \not\equiv \text{Top-1-of-}(k+1) \text{ for CR}$

 $\begin{array}{l} \mbox{Guarantee} \ \alpha \ \mbox{for} \ \mathcal{O}_k \implies \alpha \ \mbox{for Top-1-of-}(k+1). \\ \mbox{Fix} \ \varepsilon > 0, k=1, \ \mbox{and let} \end{array}$

$$X_1 = 1, \quad X_2 = \begin{cases} 1 + \varepsilon & \text{w.p. } 1/2 - \varepsilon \\ 0 & \text{w.p. } 1/2 + \varepsilon \end{cases}, \quad X_3 = \begin{cases} 1/\varepsilon & \text{w.p. } \varepsilon \\ 0 & \text{w.p. } 1 - \varepsilon \end{cases}$$

$\mathcal{O}_k \not\equiv \text{Top-1-of-}(k+1) \text{ for CR}$

 $\begin{array}{l} \mbox{Guarantee} \ \alpha \ \mbox{for} \ \mathcal{O}_k \implies \alpha \ \mbox{for Top-1-of-}(k+1). \\ \mbox{Fix} \ \varepsilon > 0, k=1, \ \mbox{and let} \end{array}$

$$X_1 = 1, \quad X_2 = \begin{cases} 1 + \varepsilon & \text{w.p. } 1/2 - \varepsilon \\ 0 & \text{w.p. } 1/2 + \varepsilon \end{cases}, \quad X_3 = \begin{cases} 1/\varepsilon & \text{w.p. } \varepsilon \\ 0 & \text{w.p. } 1 - \varepsilon \end{cases}$$

$$\begin{split} & \mathbb{E}[\max{\{X_1, X_2, X_3\}}] \to 2. \\ & \textbf{Let } \mathcal{A} \text{ for Top-1-of-2 that always selects } X_1 \text{ and } X_3. \\ & \mathbb{E}[\mathcal{A}] \to 2. \end{split}$$

$\mathcal{O}_k \not\equiv \mathsf{Top-1-of-}(k+1)$ for CR

 $\begin{array}{l} \mbox{Guarantee} \ \alpha \ \mbox{for} \ \mathcal{O}_k \implies \alpha \ \mbox{for Top-1-of-}(k+1). \\ \mbox{Fix} \ \varepsilon > 0, k=1, \ \mbox{and let} \end{array}$

$$X_1 = 1, \quad X_2 = \begin{cases} 1 + \varepsilon & \text{w.p. } 1/2 - \varepsilon \\ 0 & \text{w.p. } 1/2 + \varepsilon \end{cases}, \quad X_3 = \begin{cases} 1/\varepsilon & \text{w.p. } \varepsilon \\ 0 & \text{w.p. } 1 - \varepsilon \end{cases}$$

$\mathcal{O}_k \not\equiv \mathsf{Top-1-of-}(k+1)$ for CR

 $\begin{array}{l} \mbox{Guarantee } \alpha \mbox{ for } \mathcal{O}_k \implies \alpha \mbox{ for Top-1-of-}(k+1). \\ \mbox{Fix } \varepsilon > 0, k=1, \mbox{ and let} \end{array}$

$$X_1 = 1, \quad X_2 = \begin{cases} 1 + \varepsilon & \text{w.p. } 1/2 - \varepsilon \\ 0 & \text{w.p. } 1/2 + \varepsilon \end{cases}, \quad X_3 = \begin{cases} 1/\varepsilon & \text{w.p. } \varepsilon \\ 0 & \text{w.p. } 1 - \varepsilon \end{cases}$$

$$\blacktriangleright \mathbb{E}[\max\left\{X_1, X_2, X_3\right\}] \to 2.$$

Let \mathcal{A} for Top-1-of-2 that always selects X_1 and X_3 . $\mathbb{E}[\mathcal{A}] \to 2$.

Let
$$\mathcal{B}$$
 for \mathcal{O}_1 .

If B doesn't query at X₁ ⇒ E[B] = E[max {X₂, X₃}] → ³/₂.
 If B queries at X₁ ⇒

$$\mathbb{E}[\mathcal{B}] = \left(\frac{1}{2} + \varepsilon\right)(1 - \varepsilon) \cdot 1 + \left(\frac{1}{2} - \varepsilon\right) \cdot (1 + \varepsilon) + \left(\frac{1}{2} + \varepsilon\right)\varepsilon \cdot \frac{1}{\varepsilon} \to \frac{3}{2}.$$

Theorem [Har-Peled, Harb, L. '24] Single-threshold* algorithm \mathcal{A} achieves

$$\mathsf{PMax}(\mathcal{A}) \geq 1 - \mathcal{O}\left(k^{-k/5}\right).$$

Theorem [Har-Peled, Harb, L. '24] Single-threshold* algorithm \mathcal{A} achieves

$$\mathsf{PMax}(\mathcal{A}) \geq 1 - \mathcal{O}\left(k^{-k/5}\right).$$

For every algorithm ALG,

$$\mathsf{PMax}(ALG) \leq 1 - \mathcal{O}\left(k^{-k}\right).$$

Theorem [Har-Peled, Harb, L. '24] Single-threshold^{*} algorithm \mathcal{A} achieves

$$\mathsf{PMax}(\mathcal{A}) \geq 1 - \mathcal{O}\left(k^{-k/5}\right).$$

For every algorithm ALG,

$$\mathsf{PMax}(ALG) \leq 1 - \mathcal{O}\left(k^{-k}\right).$$

Almost tight bound, up to the exponent.

New upper bound. Asymptotical improvement on lower bound of [Gilbert, Mosteller '66]

• Idea: Set threshold T such that $Pr[X_i \ge T] = L$ for some L.

Use Chernoff bound to argue that $\leq k$ of the X_i 's are above T and we don't run out of oracle calls.

• Idea: Set threshold T such that $Pr[X_i \ge T] = L$ for some L.

Use Chernoff bound to argue that $\leq k$ of the X_i 's are above T and we don't run out of oracle calls.

• <u>Observation</u>: Only use oracle if $X_{i_1} \leq X_{i_2} \leq \cdots \leq X_{i_m}!$

- ▶ <u>Idea</u>: Set threshold T such that $\Pr[X_i \ge T] = L$ for some L. Use Chernoff bound to argue that $\le k$ of the X_i 's are above T and we don't run out of oracle calls.
- <u>Observation</u>: Only use oracle if $X_{i_1} \leq X_{i_2} \leq \cdots \leq X_{i_m}!$
- <u>Better idea</u>: Set threshold T such that $\Pr[X_i \ge T] = \frac{e^{\sqrt{k}}}{n}$.

Use Chernoff bound to argue that MAX of sequence of X_i 's above T changes $\leq k$ times \implies We don't run out of queries.

- ▶ <u>Idea:</u> Set threshold T such that $Pr[X_i \ge T] = L$ for some L. Use Chernoff bound to argue that $\le k$ of the X_i 's are above T and we don't run out of oracle calls.
- <u>Observation</u>: Only use oracle if $X_{i_1} \leq X_{i_2} \leq \cdots \leq X_{i_m}$!

• Better idea: Set threshold T such that $\Pr[X_i \ge T] = \frac{e^{\sqrt{k}}}{n}$.

Use Chernoff bound to argue that MAX of sequence of X_i 's above T changes $\leq k$ times \implies We don't run out of queries.

• Upper Bound: $\mathcal{U}[0,1]$ with roughly $k \log k$ of the X_i 's in $\overline{[1-k\log k/n,1]}$.

Every algorithm will either miss $\max_i X_i$ or run out of oracle calls w.p. $k^{-k}.$

Theorem [Har-Peled, Harb, L. '24]

 \exists sequence $\left\{\xi_k\right\}_{k\in\mathbb{N}}$ and single-threshold* algorithm $\mathcal A$ such that

$$\mathsf{CR}(\mathcal{A}) \geq 1 - \mathcal{O}\left(e^{-\xi_k}\right) = 1 - \mathcal{O}\left(e^{-k/e + \mathcal{O}(k)}\right).$$

Theorem [Har-Peled, Harb, L. '24]

 \exists sequence $\left\{\xi_k\right\}_{k\in\mathbb{N}}$ and single-threshold* algorithm $\mathcal A$ such that

$$\mathsf{CR}(\mathcal{A}) \geq 1 - \mathcal{O}\left(e^{-\xi_k}\right) = 1 - \mathcal{O}\left(e^{-k/e + \mathcal{O}(k)}\right).$$

For every algorithm ALG,

$$\mathsf{CR}(ALG) \leq 1 - \mathcal{O}\left(e^{-\xi_k}\right).$$

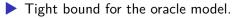
Theorem [Har-Peled, Harb, L. '24]

 \exists sequence $\left\{\xi_k\right\}_{k\in\mathbb{N}}$ and single-threshold* algorithm $\mathcal A$ such that

$$\mathsf{CR}(\mathcal{A}) \geq 1 - \mathcal{O}\left(e^{-\xi_k}\right) = 1 - \mathcal{O}\left(e^{-k/e + \mathcal{O}(k)}\right).$$

For every algorithm ALG,

$$\mathsf{CR}(ALG) \leq 1 - \mathcal{O}\left(e^{-\xi_k}\right).$$



Asymptotical improvement on both upper and lower bounds of [Ezra, Feldman, Nehama '18].

$$\blacktriangleright \ 1 - e^{-\xi_k} = e^{-\xi_k} \sum_{i=0}^k \frac{(\xi_k)^i}{i!} \iff e^{-\xi_k} = e^{-\xi_k} \sum_{i=k+1}^\infty \frac{(\xi_k)^i}{i!}$$

 ξ_k : Exponent sequence.

Intuition: Balances $\Pr[\mathsf{Poi}(\xi_k) \ge k+1] = \Pr[\mathsf{Poi}(\xi_k) = 0].$

$$\blacktriangleright \ 1 - e^{-\xi_k} = e^{-\xi_k} \sum_{i=0}^k \frac{(\xi_k)^i}{i!} \iff e^{-\xi_k} = e^{-\xi_k} \sum_{i=k+1}^\infty \frac{(\xi_k)^i}{i!}$$

 ξ_k : Exponent sequence. Intuition: Balances $\Pr[\mathsf{Poi}(\xi_k) \ge k+1] = \Pr[\mathsf{Poi}(\xi_k) = 0].$

• Idea: Set threshold T such that $\Pr[\max_i X_i \ge T] = 1 - e^{-\xi_k}$.

For $x \ge T$, analyze $\Pr[ALG \ge x]$ using Poissonization technique of [Harb '23].

$$\blacktriangleright \ 1 - e^{-\xi_k} = e^{-\xi_k} \sum_{i=0}^k \frac{(\xi_k)^i}{i!} \iff e^{-\xi_k} = e^{-\xi_k} \sum_{i=k+1}^\infty \frac{(\xi_k)^i}{i!}$$

$$\label{eq:k} \begin{split} \xi_k: \text{Exponent sequence.} \\ \text{Intuition: Balances} & \Pr[\mathsf{Poi}(\xi_k) \geq k+1] = \Pr[\mathsf{Poi}(\xi_k) = 0]. \end{split}$$

• Idea: Set threshold T such that $\Pr[\max_i X_i \ge T] = 1 - e^{-\xi_k}$.

For $x \ge T$, analyze $\Pr[ALG \ge x]$ using Poissonization technique of [Harb '23].

Like in standard PI, we set $Pr[\max_i X_i \ge T] = p$ and get a CR of p.

Upper Bound:

$$X_1 = 1, \quad X_2, \dots, X_{n-1} \sim \mathsf{Poi}(\xi_k), \quad X_n = \begin{cases} 1/\varepsilon & \text{w.p. } \varepsilon \\ 0 & \text{w.p. } 1 - \varepsilon \end{cases}$$

Upper Bound:

$$\begin{split} X_1 &= 1, \quad X_2, \dots, X_{n-1} \sim \mathsf{Poi}(\xi_k), \quad X_n = \begin{cases} 1/\varepsilon & \text{w.p. } \varepsilon \\ 0 & \text{w.p. } 1 - \varepsilon \end{cases} \\ & \mathbb{E}[\max_i X_i] = 2. \\ & \mathbb{E}[ALG] = 2 \cdot \Pr[\leq k \text{ of } X_2, \dots, X_{n-1} \neq 0] \\ & + 1 \cdot (1 - \Pr[\leq k \text{ of } X_2, \dots, X_{n-1} \neq 0]) \end{cases} \end{split}$$

 $= 2\left(1 - e^{-\xi_k}\right),$

by the choice of ξ_k .

Open Questions

Top-1-of-k Model:

Optimal asymptotics for PMax in IID setting and CR in Non-IID setting (requires new approach).

▶ PMax in Non-IID?

Analyzing oracle model is enough!

CR in IID?

Oracle Model:

lncorrect predictions \implies Robustness, ties with ML.

Questions?

