
Prophet Inequalities with Oracle Calls
and why they’re useful

Vasilis Livanos

University of Chile

April 17th, 2024

1 / 61



Prophet Inequality
Observe realizations 𝑋1, 𝑋2, … , 𝑋𝑛 ∼ (known) 𝒟1, 𝒟2, … , 𝒟𝑛.

▶ Order is adversarial.
▶ Design algorithm to maximize selected value.
▶ Compare against all-knowing prophet.
▶ If 𝒟1 = 𝒟2 = ⋯ = 𝒟𝑛 ⟹ IID setting.

Objectives:
▶ Competitive Ratio (CR or “Prophet Objective”):

𝔼 [𝐴𝐿𝐺]
𝔼 [max𝑖 𝑋𝑖]

▶ Probability of Selecting Maximum Realization
(PMax or “Secretary Objective”):

Pr [𝐴𝐿𝐺 selects max
𝑖

𝑋𝑖]
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What is known?

Prophet Objective [Krengel, Sucheston, Garling ’77, ’78]
∃ stopping strategy that achieves 1/2 ⋅ 𝔼[max𝑖 𝑋𝑖], and this is tight.

Secretary Objective
[Esfandiari, HajiAghayi, Lucier, Mitzenmacher ’20]
∃ stopping strategy that selects max𝑖 𝑋𝑖 with probability at least
1/𝑒, and this is tight.

▶ Idea: Set threshold 𝑇 , accept first 𝑋𝑖 ≥ 𝑇 .
CR: Pr[max𝑖 𝑋𝑖 ≥ 𝑇 ] = 1/2 [Samuel-Cahn ’84]

CR: 𝑇 = 𝔼[max𝑖 𝑋𝑖]
2 [Kleinberg, Weinberg ’12]

PMax: Pr[max𝑖 𝑋𝑖 ≥ 𝑇 ] = 1 − 1/𝑒
[Esfandiari, HajiAghayi, Lucier, Mitzenmacher ’20]
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What is known?

Competitive Ratio:
▶ Non-IID: 1/2

[Krengel, Sucheston, Garling
’77, ’78]

▶ IID: ≈ 0.745
[Hill-Kertz ’82,
Correa, Foncea, Hoeksma,
Oosterwijk and Vredeveld
’21]]

Secretary Objective:
▶ Non-IID: 1/𝑒

[Esfandiari, HajiAghayi,
Lucier, Mitzenmacher ’20]

▶ IID: ≈ 0.58
[Gilbert, Mosteller ’66]
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Top-1-of-k Model

▶ 𝐴𝐿𝐺 selects 𝑆 with |𝑆| ≤ 𝑘, but only max𝑋𝑖∈𝑆 𝑋𝑖 matters

1966: PMax ≥ 1 − 𝑒− O(𝑘) for IID.
[Gilbert, Mosteller ’66]

2000: CR ≥ 1 − 1
𝑘+1 for Non-IID.

[Assaf, Samuel-Cahn ’00]
2002: CR: Numerical improvements for Non-IID, based on recursive

function, but no asymptotic form.
[Assaf, Goldstein, Samuel-Cahn ’02]

2018: 1 − 𝑒−𝑘/6 ≤ CR ≤ 1 − 𝑘−2𝑘 for Non-IID.
[Ezra, Feldman, Nehama ’18]

Motivation: Auctions/Hiring with overbooking.

15 / 61



Top-1-of-k Model

▶ 𝐴𝐿𝐺 selects 𝑆 with |𝑆| ≤ 𝑘, but only max𝑋𝑖∈𝑆 𝑋𝑖 matters

1966: PMax ≥ 1 − 𝑒− O(𝑘) for IID.
[Gilbert, Mosteller ’66]

2000: CR ≥ 1 − 1
𝑘+1 for Non-IID.

[Assaf, Samuel-Cahn ’00]
2002: CR: Numerical improvements for Non-IID, based on recursive

function, but no asymptotic form.
[Assaf, Goldstein, Samuel-Cahn ’02]

2018: 1 − 𝑒−𝑘/6 ≤ CR ≤ 1 − 𝑘−2𝑘 for Non-IID.
[Ezra, Feldman, Nehama ’18]

Motivation: Auctions/Hiring with overbooking.

16 / 61



Top-1-of-k Model

▶ 𝐴𝐿𝐺 selects 𝑆 with |𝑆| ≤ 𝑘, but only max𝑋𝑖∈𝑆 𝑋𝑖 matters

1966: PMax ≥ 1 − 𝑒− O(𝑘) for IID.
[Gilbert, Mosteller ’66]

2000: CR ≥ 1 − 1
𝑘+1 for Non-IID.

[Assaf, Samuel-Cahn ’00]

2002: CR: Numerical improvements for Non-IID, based on recursive
function, but no asymptotic form.
[Assaf, Goldstein, Samuel-Cahn ’02]

2018: 1 − 𝑒−𝑘/6 ≤ CR ≤ 1 − 𝑘−2𝑘 for Non-IID.
[Ezra, Feldman, Nehama ’18]

Motivation: Auctions/Hiring with overbooking.

17 / 61



Top-1-of-k Model

▶ 𝐴𝐿𝐺 selects 𝑆 with |𝑆| ≤ 𝑘, but only max𝑋𝑖∈𝑆 𝑋𝑖 matters

1966: PMax ≥ 1 − 𝑒− O(𝑘) for IID.
[Gilbert, Mosteller ’66]

2000: CR ≥ 1 − 1
𝑘+1 for Non-IID.

[Assaf, Samuel-Cahn ’00]
2002: CR: Numerical improvements for Non-IID, based on recursive

function, but no asymptotic form.
[Assaf, Goldstein, Samuel-Cahn ’02]

2018: 1 − 𝑒−𝑘/6 ≤ CR ≤ 1 − 𝑘−2𝑘 for Non-IID.
[Ezra, Feldman, Nehama ’18]

Motivation: Auctions/Hiring with overbooking.

18 / 61



Top-1-of-k Model

▶ 𝐴𝐿𝐺 selects 𝑆 with |𝑆| ≤ 𝑘, but only max𝑋𝑖∈𝑆 𝑋𝑖 matters

1966: PMax ≥ 1 − 𝑒− O(𝑘) for IID.
[Gilbert, Mosteller ’66]

2000: CR ≥ 1 − 1
𝑘+1 for Non-IID.

[Assaf, Samuel-Cahn ’00]
2002: CR: Numerical improvements for Non-IID, based on recursive

function, but no asymptotic form.
[Assaf, Goldstein, Samuel-Cahn ’02]

2018: 1 − 𝑒−𝑘/6 ≤ CR ≤ 1 − 𝑘−2𝑘 for Non-IID.
[Ezra, Feldman, Nehama ’18]

Motivation: Auctions/Hiring with overbooking.

19 / 61



Top-1-of-k Model

▶ 𝐴𝐿𝐺 selects 𝑆 with |𝑆| ≤ 𝑘, but only max𝑋𝑖∈𝑆 𝑋𝑖 matters

1966: PMax ≥ 1 − 𝑒− O(𝑘) for IID.
[Gilbert, Mosteller ’66]

2000: CR ≥ 1 − 1
𝑘+1 for Non-IID.

[Assaf, Samuel-Cahn ’00]
2002: CR: Numerical improvements for Non-IID, based on recursive

function, but no asymptotic form.
[Assaf, Goldstein, Samuel-Cahn ’02]

2018: 1 − 𝑒−𝑘/6 ≤ CR ≤ 1 − 𝑘−2𝑘 for Non-IID.
[Ezra, Feldman, Nehama ’18]

Motivation: Auctions/Hiring with overbooking.

20 / 61



Oracle-Augmented Prophet Inequalities

𝒪𝑘 ∶ Assume 𝐴𝐿𝐺 has 𝑘 calls to 𝒪, who knows 𝑋1, … , 𝑋𝑛.
▶ Step 𝑖:

𝑋𝑖 ≥ max𝑛
𝑗=𝑖+1 𝑋𝑗 ⟹ 𝐴𝐿𝐺 selects 𝑋𝑖

𝑋𝑖 < max𝑛
𝑗=𝑖+1 𝑋𝑗 ⟹ 𝐴𝐿𝐺 rejects 𝑋𝑖

▶ Generalization of standard PI.
▶ Allows for simpler analysis since 𝐴𝐿𝐺 always selects one value.
▶ “Algorithms with predictions”.

Q.: Is 𝒪𝑘 equivalent to Top-1-of-(𝑘 + 1)?

A.: YES and NO.
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Let’s Play!

𝑘 = 1

𝑋1 = 13.67 𝑋2 = 8.59 𝑋3 = 2.82 𝑋4 = 0

𝔼[max {𝑋1, 𝑋2, 𝑋3, 𝑋4}] ≈ 24.66
𝔼[𝑂𝑃𝑇 𝐴𝐿𝐺 {𝑋1, 𝑋2, 𝑋3, 𝑋4} for 𝑘 = 0] ≈ 13.37
𝔼[𝑂𝑃𝑇 𝐴𝐿𝐺 {𝑋1, 𝑋2, 𝑋3, 𝑋4} for 𝑘 = 1] ≈ 19.9

Optimal strategy was to ignore 𝑋1, 𝑋2 and query at 𝑋3.
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𝒪𝑘 ≡ Top-1-of-(𝑘 + 1) for PMax

Assume algorithm 𝒜 for Top-1-of-(𝑘 + 1).
▶ 𝑋𝑖 → 𝒜. If 𝒜 selects 𝑋𝑖, we use 𝒪.
▶ If we’re out of oracle calls, select 𝑋𝑖.

Pr[We select max
𝑖

𝑋𝑖] = Pr[𝒜 selects max
𝑖

𝑋𝑖].

Assume algorithm ℬ for 𝒪𝑘.
▶ 𝑋𝑖 → ℬ. If ℬ expends oracle call or selects 𝑋𝑖, we select 𝑋𝑖.

Pr[We select max
𝑖

𝑋𝑖] = Pr[ℬ selects max
𝑖

𝑋𝑖].
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𝒪𝑘 ≢ Top-1-of-(𝑘 + 1) for CR

Guarantee 𝛼 for 𝒪𝑘 ⟹ 𝛼 for Top-1-of-(𝑘 + 1).

Fix ε > 0, 𝑘 = 1, and let

𝑋1 = 1, 𝑋2 = {1 + ε w.p. 1/2 − ε
0 w.p. 1/2 + ε , 𝑋3 = {

1/ε w.p. ε
0 w.p. 1 − ε

▶ 𝔼[max {𝑋1, 𝑋2, 𝑋3}] → 2.
▶ Let 𝒜 for Top-1-of-2 that always selects 𝑋1 and 𝑋3.

𝔼[𝒜] → 2.
▶ Let ℬ for 𝒪1.

▶ If ℬ doesn’t query at 𝑋1 ⟹ 𝔼[ℬ] = 𝔼[max {𝑋2, 𝑋3}] → 3/2.
▶ If ℬ queries at 𝑋1 ⟹

𝔼[ℬ] = (1
2 + ε) (1−ε)⋅1+(1

2 − ε)⋅(1+ε)+(1
2 + ε) ε⋅ 1

ε
→ 3/2.
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PMax for IID

Theorem [Har-Peled, Harb, L. ’24]
Single-threshold∗ algorithm 𝒜 achieves

PMax(𝒜) ≥ 1 − O (𝑘−𝑘/5) .

For every algorithm 𝐴𝐿𝐺,

PMax(𝐴𝐿𝐺) ≤ 1 − O (𝑘−𝑘) .

▶ Almost tight bound, up to the exponent.
▶ New upper bound.

Asymptotical improvement on lower bound of
[Gilbert, Mosteller ’66]
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PMax for IID
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PMax for IID

▶ Idea: Set threshold 𝑇 such that Pr[𝑋𝑖 ≥ 𝑇 ] = 𝐿 for some 𝐿.

Use Chernoff bound to argue that ≤ 𝑘 of the 𝑋𝑖’s are above
𝑇 and we don’t run out of oracle calls.
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▶ Idea: Set threshold 𝑇 such that Pr[𝑋𝑖 ≥ 𝑇 ] = 𝐿 for some 𝐿.

Use Chernoff bound to argue that ≤ 𝑘 of the 𝑋𝑖’s are above
𝑇 and we don’t run out of oracle calls.

▶ Observation: Only use oracle if 𝑋𝑖1
≤ 𝑋𝑖2

≤ ⋯ ≤ 𝑋𝑖𝑚
!
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▶ Idea: Set threshold 𝑇 such that Pr[𝑋𝑖 ≥ 𝑇 ] = 𝐿 for some 𝐿.
Use Chernoff bound to argue that ≤ 𝑘 of the 𝑋𝑖’s are above
𝑇 and we don’t run out of oracle calls.

▶ Observation: Only use oracle if 𝑋𝑖1
≤ 𝑋𝑖2

≤ ⋯ ≤ 𝑋𝑖𝑚
!

▶ Better idea: Set threshold 𝑇 such that Pr[𝑋𝑖 ≥ 𝑇 ] = 𝑒
√

𝑘
𝑛 .

Use Chernoff bound to argue that MAX of sequence of 𝑋𝑖’s
above 𝑇 changes ≤ 𝑘 times ⟹ We don’t run out of queries.
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▶ Idea: Set threshold 𝑇 such that Pr[𝑋𝑖 ≥ 𝑇 ] = 𝐿 for some 𝐿.
Use Chernoff bound to argue that ≤ 𝑘 of the 𝑋𝑖’s are above
𝑇 and we don’t run out of oracle calls.

▶ Observation: Only use oracle if 𝑋𝑖1
≤ 𝑋𝑖2

≤ ⋯ ≤ 𝑋𝑖𝑚
!

▶ Better idea: Set threshold 𝑇 such that Pr[𝑋𝑖 ≥ 𝑇 ] = 𝑒
√

𝑘
𝑛 .

Use Chernoff bound to argue that MAX of sequence of 𝑋𝑖’s
above 𝑇 changes ≤ 𝑘 times ⟹ We don’t run out of queries.

▶ Upper Bound: 𝒰[0, 1] with roughly 𝑘 log 𝑘 of the 𝑋𝑖’s in
[1 − 𝑘 log 𝑘/𝑛, 1].

Every algorithm will either miss max𝑖 𝑋𝑖 or run out of oracle
calls w.p. 𝑘−𝑘.
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CR for Non-IID

Theorem [Har-Peled, Harb, L. ’24]
∃ sequence {𝜉𝑘}𝑘∈ℕ and single-threshold∗ algorithm 𝒜 such that

CR(𝒜) ≥ 1 − O (𝑒−𝜉𝑘) = 1 − O (𝑒−𝑘/𝑒+o(𝑘)) .

For every algorithm 𝐴𝐿𝐺,

CR(𝐴𝐿𝐺) ≤ 1 − O (𝑒−𝜉𝑘) .

▶ Tight bound for the oracle model.
▶ Asymptotical improvement on both upper and lower bounds

of [Ezra, Feldman, Nehama ’18].
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CR for Non-IID

▶ 1 − 𝑒−𝜉𝑘 = 𝑒−𝜉𝑘 ∑𝑘
𝑖=0

(𝜉𝑘)𝑖

𝑖! ⟺ 𝑒−𝜉𝑘 = 𝑒−𝜉𝑘 ∑∞
𝑖=𝑘+1

(𝜉𝑘)𝑖

𝑖!

𝜉𝑘 ∶ Exponent sequence.
Intuition: Balances Pr[Poi(𝜉𝑘) ≥ 𝑘 + 1] = Pr[Poi(𝜉𝑘) = 0].

▶ Idea: Set threshold 𝑇 such that Pr[max𝑖 𝑋𝑖 ≥ 𝑇 ] = 1 − 𝑒−𝜉𝑘 .

For 𝑥 ≥ 𝑇 , analyze Pr[𝐴𝐿𝐺 ≥ 𝑥] using Poissonization
technique of [Harb ’23].

Like in standard PI, we set Pr[max𝑖 𝑋𝑖 ≥ 𝑇 ] = 𝑝 and get a
CR of 𝑝.
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CR for Non-IID

▶ Upper Bound:

𝑋1 = 1, 𝑋2, … , 𝑋𝑛−1 ∼ Poi(𝜉𝑘), 𝑋𝑛 = {
1/ε w.p. ε
0 w.p. 1 − ε

▶ 𝔼[max𝑖 𝑋𝑖] = 2.

𝔼[𝐴𝐿𝐺] = 2 ⋅ Pr[≤ 𝑘 of 𝑋2, … , 𝑋𝑛−1 ≠ 0]
+ 1 ⋅ (1 − Pr[≤ 𝑘 of 𝑋2, … , 𝑋𝑛−1 ≠ 0])

= 2 (1 − 𝑒−𝜉𝑘) ,

by the choice of 𝜉𝑘.
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Open Questions

Top-1-of-𝑘 Model:
▶ Optimal asymptotics for PMax in IID setting and CR in

Non-IID setting (requires new approach).

▶ PMax in Non-IID?
Analyzing oracle model is enough!

▶ CR in IID?

Oracle Model:
▶ Incorrect predictions ⟹ Robustness, ties with ML.
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