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IID Prophet Inequality

Observe realizations
𝑋1, 𝑋2, … , 𝑋𝑛 ∼ (known) 𝒟.

▶ Design algorithm to maximize/minimize selected value.
▶ Compare against all-knowing prophet.
▶ Minimization ⟹ forced to select some 𝑋𝑖.

Objectives:
▶ Competitive Ratio: 𝔼[max𝑖 𝑋𝑖]/𝔼[min𝑖 𝑋𝑖].

What if we want to beat the prophet?
▶ Competition Complexity:

inf {𝑐 ∣ 𝔼[𝐴𝐿𝐺(𝑐 𝑛)] ≥ 𝔼[ 𝑛max
𝑖=1

𝑋𝑖]} inf {𝑐 ∣ 𝔼[𝐴𝐿𝐺(𝑐 𝑛)] ≤ 𝔼[
𝑛

min
𝑖=1

𝑋𝑖]}
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What is known?

▶ Competitive Ratio:

[Hill-Kertz ’82,
Correa, Foncea, Hoeksma,
Oosterwijk and Vredeveld ’21]]
For any 𝒟, ∃ threshold stopping
strategy 𝜏1, 𝜏2, … , 𝜏𝑛 that
achieves 𝛽 ⋅ 𝔼[max𝑖 𝑋𝑖], where
𝛽 ≈ 0.745, and this is tight.

▶ Competition Complexity:

[Brustle, Correa, Dütting,
Verdugo ’22]
∀𝑚, 𝑛 ∈ ℕ, ∃ 𝒟 = 𝒟(𝑚, 𝑛) s.t.
𝔼[𝐴𝐿𝐺(𝑚)] < 𝔼[max𝑛

𝑖=1 𝑋𝑖].

▶ Competitive Ratio:
No bound on competitive
ratio for general (non-I.I.D.)
distributions.
[Esfandiari, Hajiaghayi,
Liaghat, Monemizadeh ’15]

▶ Competition Complexity:
-
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Questions

1. Is minimization similar to maximization?
2. What happens if 𝒟 does not depend on 𝑛?
3. What is

the “right” a good

way/tool to think about IID
prophet inequality?

1. No hope for universal bound: [Lucier ’22]

𝒟 ∶ 𝐹(𝑥) = 1 − 1/𝑥, with 𝑥 ∈ [1, +∞) (Equal-revenue
distribution).
𝔼[𝑋] = 1 + ∫∞

1 (1 − 𝐹(𝑥)) 𝑑𝑥 = +∞, but

𝔼[min{𝑋1, 𝑋2}] = 1 + ∫∞
1 (1 − 𝐹(𝑥))2 𝑑𝑥 < +∞.
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Towards a Unified Analysis

Fix 𝒟 and take 𝑛 → ∞.

Asymptotic Competitive Ratio (ACR)

𝜆𝑚𝑎𝑥 = lim
𝑛→∞

𝔼[𝐴𝐿𝐺(𝑛)]
𝔼[max𝑛

𝑖=1 𝑋𝑖]
. 𝜆𝑚𝑖𝑛 = lim

𝑛→∞
𝔼[𝐴𝐿𝐺(𝑛)]

𝔼[min𝑛
𝑖=1 𝑋𝑖]

.

▶ 𝑀𝑛 = max {𝑋1, … , 𝑋𝑛}
▶ 𝑚𝑛 = min {𝑋1, … , 𝑋𝑛}
▶ Distribution of 𝑀𝑛, 𝑚𝑛 as 𝑛 → ∞?
▶ lim𝑛→∞ 𝑀𝑛 = +∞, lim𝑛→∞ 𝑚𝑛 = 0 ⟹ Re-scaling
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Main Tool: Extreme Value Theory

Extreme Value Theorem [Fisher, Tippett ’28, Gnedenko ’43]
Assume there exist sequences 𝑎𝑛 > 0, 𝑏𝑛 ∈ ℝ such that

lim
𝑛→∞

𝐹𝑀𝑛
(𝑎𝑛𝑥 + 𝑏𝑛) = 𝐺+

𝛾 (𝑥).

Then,

𝐺+
𝛾 (𝑥) = {exp (−(1 + 𝛾𝑥)−1/𝛾) , if 𝛾 ≠ 0

exp (− exp (−𝑥)) , if 𝛾 = 0 .

▶
▶
▶
▶
▶ Conditions ⟹ 𝒟 follows EVT.
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▶ 𝐺 : Extreme Value Distribution, 𝛾 : Extreme Value Index
▶ Three distinct 𝐺+

𝛾 ’s:
▶ 𝛾 < 0: Reverse Weibull
▶ 𝛾 = 0: Gumbel
▶ 𝛾 > 0: Fréchet

▶
▶
▶ Conditions ⟹ 𝒟 follows EVT.
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▶ Can get similar result for Min, but 𝛾 changes.
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IID PI via Extreme Value Theory

Theorem
Assume there exist sequences 𝑎𝑛 > 0, 𝑏𝑛 ∈ ℝ such that

lim
𝑛→∞

𝐹𝑀𝑛
(𝑎𝑛𝑥 + 𝑏𝑛) = 𝐺+

𝛾 (𝑥)

for some 𝛾

lim
𝑛→∞

𝐹𝑚𝑛
(𝑎𝑛𝑥 + 𝑏𝑛) = 𝐺−

𝛾 (𝑥)

for some 𝛾

Then, the optimal DP achieves a competitive ratio, as 𝑛 → ∞, of

𝐴𝐶𝑅𝑀𝑎𝑥 = min {(1 − 𝛾)−𝛾

Γ (1 − 𝛾) , 1} . 𝐴𝐶𝑅𝑀𝑖𝑛 = max {(1 − 𝛾)−𝛾

Γ (1 − 𝛾) , 1} .

▶ Distribution-optimal closed form!
▶ Unified analysis of competitive ratio for both Max and Min.
▶ 𝒟 MHR ⟹ 𝐴𝐶𝑅𝑀𝑎𝑥 = 1 & 𝐴𝐶𝑅𝑀𝑖𝑛 ≤ 2
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Γ(𝑥) = (𝑥 − 1)!
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▶ 𝒟 MHR ⟹ 𝐴𝐶𝑅𝑀𝑎𝑥 = 1 & 𝐴𝐶𝑅𝑀𝑖𝑛 ≤ 2
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Single-Threshold Algorithm?

Theorem
Assume there exist sequences 𝑎𝑛 > 0, 𝑏𝑛 ∈ ℝ such that

lim
𝑛→∞

𝐹𝑚𝑛
(𝑎𝑛𝑥 + 𝑏𝑛) = 𝐺−

𝛾 (𝑥)

for some 𝛾. Then, the optimal single-threshold algorithm 𝑇 for
minimization achieves 𝐴𝐶𝑅𝑀𝑖𝑛(𝑇 ) = O ((log 𝑛)−𝛾).
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I lied∗!

Maximization
[Kennedy, Kertz ’91]]
For any 𝒟 following EVT, the asymptotic
competitive ratio of the optimal DP is
▶ 1 for 𝛾 ≤ 0
▶ (1−𝛾)−𝛾

Γ(1−𝛾) for 𝛾 ∈ (0, 1)
▶ 1 for 𝛾 ≥ 1 (as 𝔼[𝑋] = +∞)
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I lied∗!

Maximization
[Hill, Kertz ’82]]
For any 𝒟, ∃ a single threshold 𝜏 such that
selecting the first 𝑋𝑖 ≥ 𝜏 achieves
(1 − 1/𝑒) ⋅ 𝔼[max𝑖 𝑋𝑖] ≈ 0.632 ⋅ 𝔼[max𝑖 𝑋𝑖].
[Correa, Pizarro, Verdugo ’21]]
For any 𝒟 following EVT, the asymptotic
competitive ratio of the optimal single threshold
algorithm is
▶ 1 for 𝛾 ≤ 0
▶ −(−𝛾−𝑊−1(−𝛾 𝑒−𝛾))1−𝛾

(1−𝛾)Γ(1−𝛾)𝑊−1(−𝛾 𝑒−𝛾) for 𝛾 ∈ (0, 1)
▶ 1 for 𝛾 ≥ 1 (as 𝔼[𝑋] = +∞) 30 / 43



Asymptotic Competitive Ratio

For 𝛾 → −∞, by Stirling’s approximation

(1 − 𝛾)−𝛾

Γ(1 − 𝛾) ≈ 𝑒−𝛾.
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Asymptotic Competitive Ratio

Figure: ACR(𝛾) for Max Figure: ACR(𝛾) for Min
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High-Level Approach
𝐹(𝑡) = Pr𝑋∼𝒟[𝑋 ≤ 𝑡], 𝐹 ←(𝑝) ∶ inverse of 𝐹 (“Quantile
function”).

Using EVT and heavy-machinery from theory of regularly-varying
functions:

Max

𝔼[𝐴𝐿𝐺(𝑛)] ≈ 𝐹 ← (1 − 1 − 𝛾
𝑛 )

𝔼 [ 𝑛max
𝑖=1

𝑋𝑖] ≈

Γ(1 − 𝛾) 𝐹 ← (1 − 1
𝑛)

𝐹 ← (1 − 𝑐
𝑛) ≈

𝑐−𝛾 𝐹 ← (1 − 1
𝑛)

Min

𝔼[𝐴𝐿𝐺(𝑛)] ≈ 𝐹 ← (1 − 𝛾
𝑛 )

𝔼 [
𝑛

min
𝑖=1

𝑋𝑖] ≈ Γ(1 − 𝛾) 𝐹 ← ( 1
𝑛)

𝐹 ← ( 𝑐
𝑛) ≈ 𝑐−𝛾 𝐹 ← ( 1

𝑛)
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Asymptotic Competition Complexity

Asymptotic Competition Complexity (ACC)
For any 𝒟,

𝐴𝐶𝐶𝑀𝑎𝑥 = lim
𝑛→∞

inf {𝑐 ∣ 𝔼[𝐴𝐿𝐺(𝑐 𝑛)] ≥ 𝔼[ 𝑛max
𝑖=1

𝑋𝑖]}

𝐴𝐶𝐶𝑀𝑖𝑛 = lim
𝑛→∞

inf {𝑐 ∣ 𝔼[𝐴𝐿𝐺(𝑐 𝑛)] ≤ 𝔼[
𝑛

min
𝑖=1

𝑋𝑖]}

Theorem [L. ’23]
For every distribution following EVT,

𝐴𝐶𝐶𝑀𝑎𝑥(𝛾) = 𝐴𝐶𝐶𝑀𝑖𝑛(𝛾) = (𝐴𝐶𝑅(𝛾))
−1/𝛾

= (1−𝛾) (Γ(1 − 𝛾))1/𝛾 .
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Asymptotic Competition Complexity

▶ 𝐴𝐶𝐶 ≤ 𝑒 for all 𝒟 following EVT.
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Questions?

43 / 43


	Introduction
	I.I.D. Prophet Inequality

