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IID Prophet Inequality

Observe realizations
X, X, ..., X,, ~ (known) D.

P Design algorithm to maximize/minimize selected value.

P Compare against all-knowing prophet.

P Minimization = forced to select some X.
Objectives:

P Competitive Ratio: [[max; X;|/[E|[min; X,].
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IID Prophet Inequality

Observe realizations
X, X, ..., X,, ~ (known) D.

P Design algorithm to maximize/minimize selected value.

P Compare against all-knowing prophet.

P Minimization = forced to select some X.
Objectives:

P Competitive Ratio: [[max,; X,|/[F[min, X].
What if we want to beat the prophet?

P Competition Complexity:

inf {c

E[ALG(cn)] > [[I?;Iaf(XT]} inf{(:

E[ALG(cn)] < [E[uili}lXJ}
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What is known?

P Competitive Ratio:

For any 2D, 3 threshold stopping
strategy 7y, Ty, ..., T,, that
achieves (3 - F[max; X,], where
B &~ 0.745, and this is tight.
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What is known?

P Competitive Ratio:

For any D, 3 threshold stopping
strategy 7y, Ty, ..., T, that
achieves 3 - F[max; X,], where
B &~ 0.745, and this is tight.

P Competition Complexity:

Vm,n € N, 3D = D(m,n) s.t.
E[ALG(m)] < E[max}_; X;].

Can get something if you allow
¢ E[ALG(m)] > E[max], X;].
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What is known?

P Competitive Ratio:

For any 2D, 3 threshold stopping
strategy 7y, Ty, ..., T,, that
achieves (3 - F[max; X,], where
B &~ 0.745, and this is tight.

P Competition Complexity:

Vm,n € N, 3D = D(m,n) s.
E[ALG(m)] < E[max}_, X]

P Competitive Ratio:
No bound on competitive
ratio for general (non-1.1.D.)
distributions.

P Competition Complexity:
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Questions

1. Is minimization similar to maximization?

2. What happens if 2 does not depend on n?
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Questions

1. Is minimization similar to maximization?
2. What happens if 2 does not depend on n?
3. What is the—right" a good way/tool to think about IID

prophet inequality?

. No hope for universal bound:

D:F(x)=1—1/z with x € [1,400) (Equal-revenue
distribution).
E[X] =1+ [~ (1—F(2))dz = 400, but

Elmin{X,, X,}] =1+ [~ (1 - F(x))" dz < +o0.
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Towards a Unified Analysis
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Towards a Unified Analysis

Fix D and take n — oo.

Asymptotic Competitive Ratio (ACR)

A= qim EALGO]

mer = 5% Fmaxi, X;]

A~ i EALG()

" n—oo E[mini_y X;]
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Towards a Unified Analysis

Fix D and take n — oo.

Asymptotic Competitive Ratio (ACR)

A= qim EALGO]

max )‘min = lim

» M, =max{X,,..,X,}
» m, =min{X;,...,X,}
P Distribution of M,,, m, as n — 00?

E[ALG(n)]

n-oc F[maxiy X;]° n—oo Elmini_y X;]
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Towards a Unified Analysis

Fix D and take n — oo.

Asymptotic Competitive Ratio (ACR)

A= qim EALGO]

max )‘min = lim

» M, =max{X,,..,X,}
» m, =min{X;,...,X,}
P Distribution of M,,, m, as n — 00?
» lim, .. M, =+oc0, lim m,, =0 => Re-scaling

n—oo

E[ALG(n)]

n-oc F[maxiy X;]° n—oo Elmini_y X;]
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Main Tool: Extreme Value Theory

Extreme Value Theorem

Assume there exist sequences a,, > 0,b,, € R such that

lim Fy, (a,z+b,) =G5 (z).

n—oo v

Then,

G:(a) - {exp S T,
exp (—exp (—x)), ify=0
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Main Tool: Extreme Value Theory

Extreme Value Theorem
Assume there exist sequences a,, > 0,b,, € R such that

lim Fy, (a,z+b,) =G5 (z).

n—oo

Then,

o= { L
exp (—exp (—z)), ify=0

P G : Extreme Value Distribution,  : Extreme Value Index
P Three distinct G's:

P ~ < 0: Reverse Weibull

» ~ =0: Gumbel

P ~ > 0: Fréchet
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Main Tool: Extreme Value Theory

Extreme Value Theorem

Assume there exist sequences a,, > 0,b,, € R such that

lim Fy, (a,z+b,) =G5 (z).

n—oo FY
Then,
o= {o o e
exp (—exp (—x)), if y=0
>
>

P Central Limit Theorem analogue for MAX.
P Can get similar result for MIN, but v changes.
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Main Tool: Extreme Value Theory

Extreme Value Theorem

Assume there exist sequences a,, > 0,b,, € R such that

lim Fy, (a,z+b,) =G5 (z).

n—oo v
Then,
Gia)=4P (1 +a)™), AR
exp (—exp (—z)), ify=0
>
>
4
>
» Conditions = D follows EVT.
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[ID Pl via Extreme Value Theory

Theorem ‘F(x) =(z-1 ‘

Assume there exist sequences a,, > 0,b,, € R such that

lim Fy (a,2+b,) =Gi() | lim F, (a,2+b,)=G;()
for some ~ for some ~y

Then, the optimal DP achieves a competitive ratio, as n — oo, of

AC Ry, = max{ 71

AC Ry =min{ 17721,
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[ID Pl via Extreme Value Theory

Theorem ‘F(x) =(z-1 ‘
Assume there exist sequences a,, > 0,b,, € R such that
lim Fy, (a,z+0b,) =G (z) lim F,, (a,z+b,) =G (v)
n—00 n n—00 "

for some ~ for some ~y

Then, the optimal DP achieves a competitive ratio, as n — oo, of

AC Ry, = max{ 71

AC Ry =min{ 17721,

P Distribution-optimal closed form!
P Unified analysis of competitive ratio for both MAX and MIN.
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[ID Pl via Extreme Value Theory

Theorem
Assume there exist sequences a,, > 0,b,, € R such that

lim Fy, (a,r+b,) =GI(2) lim F,, (a,z+b,) =G, (x)

n—00 n—00 n v

for some for some

Then, the optimal DP achieves a competitive ratio, as n — oo, of

AC Ry, = max{ 71

AC Ry =min{ 17721,

P Distribution-optimal closed form!
P Unified analysis of competitive ratio for both MAX and MIN.
» DMHR = ACR,,.,=1 & ACR,, <2
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Single-Threshold Algorithm?
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Single-Threshold Algorithm?

Theorem
Assume there exist sequences a,, > 0,b,, € R such that

lim £, (a,z+b,) =G, ()

n—oo

for some «. Then, the optimal single-threshold algorithm 1" for
minimization achieves ACR,;,,(T) = O ((logn) ).
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| lied*!

Maximization

For any D following EVT, the asymptotic
competitive ratio of the optimal DP is

P 1fory<0

> (rl(?—)y) for v € (0,1)

P 1 fory>1 (as E[X] = +0)
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| lied*!

Maximization

For any D, 3 a single threshold T such that
selecting the first X, > 7 achieves

For any D following EVT, the asymptotic
competitive ratio of the optimal single threshold
algorithm is

P 1fory<0

> e for v € (0, 1)

) 1 o~ 1 o, ~—I " P
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Asymptotic Competitive Ratio

-1
For v — —o0, by Stirling’s approximation

A=9"7 _ —
I'(1—7) '
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Asymptotic Competitive Ratio

ACR(y) ACR(y)®
2 2
1 0 1 o2 -2 1 0 1 2
' 7
Figure: ACR(7y) for Max Figure: ACR(7y) for MIN
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High-Level Approach

F(t) =Pry_p[X <t], F“(p):inverse of F' (“Quantile
function™).

Using EVT and heavy-machinery from theory of regularly-varying
functions:

MAX MIN
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MAX MIN

E[ALG(n)] ~ (1 . ;7> E[ALG(n)] ~ F© (i”)
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High-Level Approach

F(t) =Pry_p[X <t], F“(p):inverse of F' (“Quantile
function™).

Using EVT and heavy-machinery from theory of regularly-varying
functions:

MAx MIN
E[ALG(n)] ~ (1 . ;7> E[ALG(n)] ~ F© (1 ;7>
£ | X | ~ £ [min X,| ~T(1-9) F (1)
0 1)
]r@:): m—l)!‘
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High-Level Approach

F(t) =Pry_p[X <t], F“(p):inverse of F' (“Quantile
function™).

Using EVT and heavy-machinery from theory of regularly-varying
functions:

Max Min
E[ALG(n)] ~ (1 . ;7> E[ALG(n)] ~ F© (1 ;7>
: [ng ~ ) £ [min X,| ~T(1-9) F (1)
(l—x) F©{1—-=
Y n Fe <E> ~ e FE <1>
F(-5)- e
¢ (1_:&) T(z) = {z—1)!]
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Asymptotic Competition Complexity
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Asymptotic Competition Complexity

Asymptotic Competition Complexity (ACC)
For any D,

ACCy e = lim inf{c
n—oo

EALG(en)] > Elmhx X, |

ACCYyy, = lim inf{c
n—oo

FALG(en)] < Elmin X, |
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Asymptotic Competition Complexity

Asymptotic Competition Complexity (ACC)
For any D,

ACCy e = lim inf{c
n—oo

EALG(en)] > Elmhx X, |

=1

ACCYyy, = lim inf{c
n—oo

FALG(en)] < Elmin X, |

Theorem
For every distribution following EVT,

ACCMax (7) = ACCMZTL (’7)
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Asymptotic Competition Complexity

Asymptotic Competition Complexity (ACC)
For any D,

ACCy e = lim inf{c
n—oo

EALG(en)] > Elmhx X, |

=1

ACCYyy, = lim inf{c
n—oo

FALG(en)] < Elmin X, |

Theorem
For every distribution following EVT,

_1/’Y

ACCy145(7) = ACCyp,(7) = (ACR())
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Asymptotic Competition Complexity

Asymptotic Competition Complexity (ACC)
For any D,

ACCy e = lim inf{c
n—oo

EALG(en)] > Elmhx X, |

ACCYyy, = lim inf{c
n—oo

FALG(en)] < Elmin X, |

Theorem
For every distribution following EVT,

_1/,Y 1
ACCy14s(7) = ACCy,(7) = (ACR(y)) = (1=9) (D(1 =)
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Asymptotic Competition Complexity

ACC(v)

3

P ACC < e for all D following EVT.
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Questions?
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