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KILOVOLT 
MAGIC 

Sorensen is a maker of power supplies and 
doesn't make any of the "end-use" equip­
ment mentioned below. Yet, some of these 
applications of Sorensen equipment by our 
customers are so novel that they may be of 
interest to you. Maybe they'll spark an idea: 

Open Sesame. Selection of sesame seeds 
for use in the manufacture of halvah-a fa­
vorite confection of New York's lower East 
Side - was the job of kilovolts from one 
Sorensen Series 200 supply. Same principle 
can purify other grains and cereals, tobacco, 
and low-grade ores. 

Gold From Air. Gold spun off into thin air 
from a grinding or buffing wheel can quickly 
cause cash to vanish. Ditto with platinum or 
other precious metals. Clever Sorensen cus­
tomers are putting this pay dirt back into 
the pay roll with an electrostatic recovery 
system-powered, of course, with a Sorensen 
h-v supply. 

Ignition damper. Everybody's heard about 
the high-voltage spark that sets off an ex­
plosion. A new h-v system prevents explo­
sions. High-voltage-from a Sorensen 9000 
Series -precipitates a sample of potentially 
explosive dusts; an alarm is given long be­
fore the concentration becomes dangerous. 

Vanishing Volt.Amps. Dielectric testing 
with a-c is more or less standard. (Sorensen 
offers a complete line of h-v a-c testers, con­
forming to ASTM standards.) However, 
where the test load has high capacitance, d-c 
testing can often effect substantial savings. 
In a typical problem, a 250-watt, d-c tester 
replaced a 25 kva a-c tester with equal re­
sults, one-fourth the cost, and a 100: 1 reduc­
tion in light bills. 

High-voltage or low, you'll find that Soren­
sen has the answer to your controlled power 
problems. In addition to high-voltage equip­
ment, the Sorensen line includes: regulated 
and unregulated d-c supplies, a-c line-voltage 
regulators, frequency changers, inverters, 
and converters. Contact your Sorensen rep­
resentative, or write: Sorensen & Company, 
Richards Ave., South Norwalk, Conn. 9.64 

CONTROLLED 

S� POWER 

PRODUCTS 

... the widest line lets you make the wisest choice 

ISO. 

MATHEMATICAL GAMES 
A fifth collection 

of "brain-teasers" 

by Martin Gardner 

E
very eight months or so this de­

partment presents an assortment 
of short problems drawn from 

various mathematical fields. This is the 
fifth such collection. The answers to the 
problems will be given here next month. 
I welcome letters from readers who find 
fault with an answer, solve a problem 
more elegantly, or generalize a problem 
in some interesting way. In the past I 
have tried to avoid puzzles that play 
verbal pranks on the reader, so I think 
it only fair to say that several of this 
month's "brain-teasers" are touched with 
whimsy. They must be read with care; 
otherwise you may find the road to a 
solution blocked by an unwarranted as­
sumption. 

1. 

Mel Stover of Winnipeg was the first 
to send this amusing problem-amusing 
because of the ease with which even the 
best of geometers may fail to approach 
it properly. Given a triangle with one 
obtuse angle, is it possible to cut the 
'triangle into smaller triangles, all of 
them acute? (An acute triangle is a 
triangle with three acute angles. A right 
angle is of course neither acute nor ob­
tuse.) If this cannot be done, give a 
proof of impossibility. If it can 'be done, 
what is the smallest number of acute 
triangles into which any obtuse triangle 
can be dissected? 

The illustration at right shows a typi­
cal attempt that leads nowhere. The tri­
angle has been divided into three acute 
triangles, but the fourth is obtuse, so 
nothing has been gained by the pre­
ceding cuts. 

This delightful problem led me to ask 
myself: "What is the smallest number of 
acute triangles into which a square can 
be dissected?" For days I was convinced 
that nine was the answer; then suddenly 
I saw how to reduce it to eight. I won­
der how many readers can discover an 

eight-triangle solution, or perhaps an 
even better one. I am unable to prove 
that eight is the minimum, though I 
strongly suspect that it is. 

2. 

In H. G. Wells's novel The First Men 
in the Moon our natural satellite is found 
to be inhabited by intelligent insect 
creatures who live in caverns below the 
surface. These creatures, let us assume, 
have a unit of distance that we shall call 
a "lunar." It was adopted because the 
moon's surface area, if expressed in 
square lunars, exactly equals the moon's 
volume in cubic lunars. The moon's di­
ameter is 2,160. miles. How many miles 
long is a lunar? 

3. 
In 1958 John H. Fox, Jr., of the Min­

neapolis-Honeywell Regulator Co., and 
L. Gerald Mamie of the Massachusetts 
Institute of Technology devised an un­
usual betting game which they call Goo­
gol. It is played as follows: Ask someone 
to take as many slips of paper as he 
pleases, and on each slip write a different 
positive number. The numbers may 
range from small fractions of one to a 
number the size of a "googol" (1 fol­
lowed by a hundred zeros) or even 
larger. These slips are turned face-down 
and shuffled over the top of a table. One 
at a time you turn the slips face-up. The 
aim is to stop turning when you come to 
the number that you guess to be the 
largest of the series, You cannot go back 
and pick a previously turned slip. If 
you turn over all the slips, then of course 
you must pick the last one turned. 

Most people will suppose the odds 

Can this triangle be cut into acute ones? 
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Secretary Problem

▶ n unknown values
x1, . . . , xn

▶ Random order
▶ Step i :

1. Select xi and stop
2. Ignore xi and continue

Pr[We select maxi xi ]?
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Secretary Problem

· · ·

S1
Sampling Phase

· · ·

S2
Selection Phase

w.p. 1/2, x∗
1 ∈ S2

w.p. 1/2, x∗
2 ∈ S1

 =⇒ Pr [We select max
i

xi ] ≥ 1/4.

▶ Can get 1/e (optimal) by sampling first n/e.
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Prophet Inequality

What if we know something about the xi ’s?
[Krengel, Sucheston and Garling ’77]

X1, X2, . . . , Xn ∼ (known) D1, D2, . . . , Dn
arrive in adversarial order.

▶ Design stopping time to maximize selected value.
▶ Compare against all-knowing prophet: E[maxi Xi ].
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X1 = 2.34 X2 = 3.12 X3 = 3.20 X4 = 0.87
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Prophet Inequality [Krengel, Sucheston and Garling ’77, ’78]
∃ stopping strategy that achieves 1/2 · E[maxi Xi ],
and this is tight.

X1 = 1 w.p. 1, and X2 =
{

1/ε w.p. ε

0 w.p. 1 − ε

E [ALG] = 1 for all algorithms.

E[maxi Xi ] = 1
ε · ε + 1 · (1 − ε) = 2 − ε.

▶ Idea: Set threshold T , accept first Xi ≥ T .
▶ T : Pr[maxi Xi ≥ T ] = 1/2 works [Samuel-Cahn ’84].
▶ T = 1/2 · E[maxi Xi ] works [Kleinberg and Weinberg ’12].
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Why should we care?

Price p ⇐⇒ Threshold T
in Prophet Inequality

What about maximizing revenue?
Use “virtual valuations” to design p: ϕ(v) = v − 1−F (v)

f (v) .
[Myerson ’81]
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Why should we care?

▶ Posted prices apply when buyers arrive online.
▶ Lots of past work on this and extensions:

▶ [Hajiaghayi, Kleinberg and Sandholm ’07]
▶ [Chawla, Hartline, Malec and Sivan ’10]
▶ [Alaei ’11]
▶ [Babaioff, Immorlica, Lucier and Weinberg ’14]
▶ [Dütting, Feldman, Kesselheim and Lucier ’16]
▶ [Correa, Foncea, Pizarro and Verdugo ’19]
▶ [Correa and Cristi ’23]
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IID Prophet Inequality

Fundamental questions:
1. What if D1 = D2 = · · · = Dn = D?

Can 1/2 be improved?
2. Optimal (online) algorithm?
3. Worst-case D?

IID Prophet Inequality [Hill-Kertz ’82,
Correa, Foncea, Hoeksma, Oosterwijk and Vredeveld ’21]]
For any D, ∃ threshold stopping strategy τ1, τ2, . . . , τn that achieves
β · E[maxi Xi ], where β ≈ 0.745, and this is tight.

Worst-case D: High variance – depends on n
Most of the mass is at 0 – low probability of getting a high value.
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Optimal Threshold DP

If we reach Xn, take it. Focus on Xn−1, Xn.
What should τn−1 be?

E[OPTALGn−1,n] = (1 − F (τn−1))E [X | X ≥ τn−1] + F (τn−1)E[X ]
=⇒ τn−1 = E[X ].

In general, we have τi = E[OPTALGi+1,...,n].
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Cost Minimization

What if objective is mini Xi? Same problem?
▶ Objective: Minimize selected value, compare against E[mini Xi ].
▶ Forced to select an element.

▶ No bounded approximation for adversarial or random order
(non-IID setting)!

X1 = 1 w.p. 1, X2 =
{

1/ε w.p. ε

0 w.p. 1 − ε

E[ALG ]
E[min{X1, X2}] = 1

ε

▶ What about I.I.D.?
Intuition:
Set T = 2 · E[mini Xi ].
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▶ Forced to select an element.
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(non-IID setting)!
X1 = 1 w.p. 1, X2 =

{
1/ε w.p. ε

0 w.p. 1 − ε

E[ALG ]
E[min{X1, X2}] = 1

ε

▶ What about I.I.D.?
Intuition False Intuition:
Set T = 2 · E[mini Xi ].
▶ Doesn’t work! Pr[We are forced to select Xn] ≥ c.
▶ Optimal single threshold T =⇒ Θ (polylog n)-approximation.

[L.-Mehta ’22]
30 / 46



Is Cost Minimization hopeless?
Analyze the optimal DP. Set τi , accept first Xi ≤ τi .
Same intuition holds: τi = E[OPTALGi+1,...,n]. How to analyze it?

Idea
Look at ”fatness” of D’s tail. Captured by D’s Hazard Rate.

h(x) = f (x)
1 − F (x)

for Max

r(x) = f (x)
F (x)

for Min

Intuition: h(x) = Pr [X = x | X ≥ x ], r(x) = Pr [X = x | X ≤ x ]
(for discrete distributions).
MHR Distribution
h is increasing.
▶ Important subclass, lots of past work by economists.

Good guarantees in many applications (e.g. revenue
maximization in auctions).
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Theorem [L.-Mehta ’22]
In the Min-PI setting, for every distribution,
▶ If E[X ] = +∞, the competitive ratio is infinite.
▶ If E[X ] < +∞, there exists a constant c-approximate cost

minimization prophet inequality, and we characterize the
optimal c as the solution to a simple inequality.

▶ Closed form for c for special subclass of distributions.

Some observations:
▶ c is distribution-dependent. Can be arbitrarily large.
▶ First distribution-sensitive optimal guarantees for prophet

inequalities.
▶ Use of hazard rate in prophet inequalities as analysis tool is

new.
▶ For MHR distributions =⇒ c = 2-approximation.
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Why c = +∞ when E[X ] = +∞?

Equal-Revenue (Pareto) Distribution:

F (x) = 1 − 1/x, with x ∈ [1, +∞).

E[X ] = 1 +
∫ ∞

1 (1 − F (x)) dx = +∞, but

E[min{X1, X2}] = 1 +
∫ ∞

1 (1 − F (x))2 dx < +∞.

▶ Due to [Lucier ’22].
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What if D is independent of n?
What is c if we fix D and take n → ∞?

[Kennedy-Kertz ’91]
For any D, independent of n, ∃ threshold stopping strategy
τ1, τ2, . . . , τn that achieves λ · E[maxi Xi ], as n → ∞, where
λ ≈ 0.776, and this is tight.

[Braun-Buttkus-Kesselheim ’21]
For any MHR D, independent of n, ∃ threshold stopping strategy
τ1, τ2, . . . , τn that achieves 1 · E[maxi Xi ], as n → ∞.

Let Mn = max {X1, . . . , Xn} , mn = min {X1, . . . , Xn}.

Limiting distribution of Mn or mn as n → ∞?

Clearly, limn→∞ Mn = +∞ and limn→∞ mn = 0, thus we need
rescaling.
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Extreme Value Theory

Extreme Value Theorem [Fisher-Tippett ’28, Gnedenko ’43]
Assume there exist sequences an > 0, bn ∈ R such that

lim
n→∞

FMn(anx + bn) = G+
γ (x).

Then,

G+
γ (x) =

exp
(
−(1 + γx)−1/γ

)
, if γ ̸= 0

exp (− exp (−x)) , if γ = 0
,

where γ = limx→∞
(

1
h(x)

)′

.

▶ Analogue of Central Limit Theorem for Max instead of
averages.

▶ G : Extreme Value Distribution, γ : Extreme Value Index
▶ Can get similar result for Min by G−(x) = 1 − G+(−x), but γ

changes.
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IID PI via Extreme Value Theory

Theorem [L. ’23]
Assume there exist sequences an > 0, bn ∈ R such that

lim
n→∞

FMn(anx + bn) = G+
γ (x)

with γ = limx→∞
(

1
h(x)

)′

.

lim
n→∞

Fmn(anx + bn) = G−
γ (x)

with γ = limx→0+

(
1

r(x)

)′

.

Then, the optimal DP achieves a competitive ratio, as n → ∞, of

min
{

(1 − γ)−γ

Γ (1 − γ) , 1
}

. max
{

(1 − γ)−γ

Γ (1 − γ) , 1
}

.

▶ Unified analysis of competitive ratio for both Max and Min.
▶ Recovers and generalizes previous results of [Kennedy-Kertz

’91] and [Braun-Buttkus-Kesselheim ’21].
▶ Competitive ratio has same form for both Max and Min!
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Asymptotic Competitive Ratio

For γ → −∞, by Stirling’s approximation

(1 − γ)−γ

Γ(1 − γ) ≈ e−γ .
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Asymptotic Competitive Ratio

Figure: ACR(γ) for Max Figure: ACR(γ) for Min
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Open Problems

▶ Extend Min-PI to multiple selection.
▶ Are there Di for which we can get constant approximation in

the non-IID setting?
▶ What can you get with 1 < k < n thresholds?
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Thank You!

Questions?
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