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Secretary Problem

O ORNS © © . O

51 52
Sampling Phase Selection Phase

w.p. 2, xf €S

] > 1/4.
w.p. 2, xj€ 51} = Pr[We selectml_axx,] > 1/4

» Can get /e (optimal) by sampling first n/e.
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Prophet Inequality

What if we know something about the x;'s?

Xl,Xg, ey X,, ~ (known) Dl,DQ, N ,Dn
arrive in adversarial order.

» Design stopping time to maximize selected value.

» Compare against all-knowing prophet: E[max; Xj].
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U[2,4] U[2,4] U1, 5] u[o,7]

X1 =234 X =3.12 X3 =3.20 X4 =0.87
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Prophet Inequality
J stopping strategy that achieves 1/2 - E[max; Xj],
and this is tight.

1
Xi=1 w.p. 1, and X, = fo wp- €
0 wp 1l-—¢

E [ALG] = 1 for all algorithms.
E[max; Xj]=1-e+1-(1-¢)=2—¢.

e
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Prophet Inequality
J stopping strategy that achieves 1/2 - E[max; Xj],
and this is tight.

1
Xi=1 w.p. 1, and X, = fo wp- €

0 wp 1l-—¢
E [ALG] = 1 for all algorithms.

E[max; Xj]=2-e+1-(1—-¢)=2—c¢.
Idea: Set threshold T, accept first X; > T.

> T Pr[max; X; > T] = /2 works
> T =1/2. E[max; X;] works
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Why should we care?
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Why should we care?
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Why should we care?

Price p <= Threshold T
in Prophet Inequality
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Why should we care?

) Price p <= Threshold T
5 44 in Prophet Inequality

What about maximizing revenue?
Use “virtual valuations” to design p: ¢(v) =v — 1;(’:‘/()").
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Why should we care?

» Posted prices apply when buyers arrive online.
» Lots of past work on this and extensions:

VVVVYVYYVYY
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[ID Prophet Inequality

Fundamental questions:
1. Whatif Dy =Dy =--- =D, =D?
Can 1/2 be improved?
2. Optimal (online) algorithm?
3. Worst-case D?
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[ID Prophet Inequality

Fundamental questions:
1. Whatif Dy =Dy =--- =D, =D?
Can 1/2 be improved?
2. Optimal (online) algorithm?
3. Worst-case D?

[ID Prophet Inequality

For any D, d threshold stopping strategy 71,72, ..., 7, that achieves
S - E[max; X;], where 8 & 0.745, and this is tight.

Worst-case D: High variance — depends on n
Most of the mass is at 0 — low probability of getting a high value.
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Optimal Threshold DP

If we reach X, take it. Focus on X,_1, X,.
What should 7,_1 be?
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Optimal Threshold DP

If we reach X, take it. Focus on X,_1, X,.
What should 7,_1 be?

E[OPTALG, 1,] = (1 = F(Tp-1)) E[X | X > Tp_1] + F(7n-1) E[X]
= Tp_1 = E[X]

In general, we have 7; = E[OPTALG 1, ]
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Cost Minimization

What if objective is min; X;? Same problem?
» Objective: Minimize selected value, compare against E[min; Xj].

> Forced to select an element.
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Cost Minimization

What if objective is min; X;? Same problem?
» Objective: Minimize selected value, compare against E[min; Xj].
» Forced to select an element.

» No bounded approximation for adversarial or random order
(non-1ID setting)!

1 g P
X1:1W.p. ]_, X2: / WP c
0 wp 1-—¢
E[ALG] 1
E[min{Xl,Xg}] €

» What about I.1.D.?
Intuition:
Set T=2- ]E[min,- X,]
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Cost Minimization

What if objective is min; X;? Same problem?
» Objective: Minimize selected value, compare against E[min; Xj].
P Forced to select an element.
» No bounded approximation for adversarial or random order
(non-1ID setting)!

1
Xi=1wp. 1. X, — Je w.p. €
0 wp 1—c¢

E[ALG] 1

E[min{Xs, Xo}] ¢

» What about I.1.D.7
{ntuition False Intuition:
Set T=2- ]E[min,- X,]
» Doesn't work! Pr[We are forced to select X,] > c.
» Optimal single threshold T = © (polylog n)-approximation.
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Is Cost Minimization hopeless?

Analyze the optimal DP. Set ;, accept first X; < ;.
Same intuition holds: 7; = E[OPTALG/1,.. »]. How to analyze it?
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Is Cost Minimization hopeless?

Analyze the optimal DP. Set ;, accept first X; < ;.
Same intuition holds: 7; = E[OPTALG/1,.. »]. How to analyze it?

Idea
Look at "fatness” of D’s tail. Captured by D's Hazard Rate.

_ ) _ f(x)
R EE = Fe
for MAX for MIN

Intuition: h(x) =Pr[X =x|X > x], r(x) =Pr[X =x| X < x]
(for discrete distributions).
MHR Distribution

h is increasing.

» Important subclass, lots of past work by economists.
Good guarantees in many applications (e.g. revenue
maximization in auctions).
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Theorem
In the Min-PI setting, for every distribution,
> If E[X] = 400, the competitive ratio is infinite.

» If E[X] < 400, there exists a constant c-approximate cost
minimization prophet inequality, and we characterize the
optimal ¢ as the solution to a simple inequality.

» Closed form for ¢ for special subclass of distributions.

Some observations:
» c is distribution-dependent. Can be arbitrarily large.

» First distribution-sensitive optimal guarantees for prophet
inequalities.

» Use of hazard rate in prophet inequalities as analysis tool is
new.

» For MHR distributions = ¢ = 2-approximation.
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Why ¢ = +00 when E[X] = +007?

Equal-Revenue (Pareto) Distribution:

F(x) =1—1/x, with x € [1,400).
E[X] =1+ /77 (1 — F(x)) dx = +o0, but
E[min{X1, X2}] = 1+ [{° (1 — F(x))? dx < +oc.

» Due to
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What if D is independent of n?
What is c if we fix D and take n — oco?
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What if D is independent of n?
What is c if we fix D and take n — oco?

For any D, independent of n, 3 threshold stopping strategy
T1,T2,...,Tp that achieves A\ - E[max; Xi], as n — oo, where
A = 0.776, and this is tight.
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What if D is independent of n?
What is c if we fix D and take n — oco?

For any D, independent of n, 3 threshold stopping strategy
T1,T2,...,Tp that achieves A\ - E[max; Xi], as n — oo, where
A = 0.776, and this is tight.

For any MHR D, independent of n, 3 threshold stopping strategy
T1,T2,...,Tn that achieves 1 - E[max; Xj], as n — oc.
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What if D is independent of n?
What is c if we fix D and take n — oco?

For any D, independent of n, 3 threshold stopping strategy
T1,T2,...,Tp that achieves A\ - E[max; Xi], as n — oo, where
A = 0.776, and this is tight.

For any MHR D, independent of n, 3 threshold stopping strategy
T1,T2,...,Tn that achieves 1 - E[max; Xj], as n — oc.

Let M, = max{Xy,..., Xp},mp =min{Xy,..., X,}.
Limiting distribution of M, or m, as n — oc?

Clearly, lim,_oo M, = 400 and lim,_, .o m, = 0, thus we need
rescaling.
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Extreme Value Theory

Extreme Value Theorem
Assume there exist sequences a, > 0, b, € R such that

: _ct
nll_)rr;O Fm,(anx + by) = G (x).

Then,

exp (*(1 + vX)‘l/”) , ify#0
exp(—exp(—x)),  ify=0"

!

where v = limy_ o (ﬁ) .

39/46



Extreme Value Theory

Extreme Value Theorem
Assume there exist sequences a, > 0, b, € R such that

: _ct
nll_)rr;O Fm,(anx + by) = G (x).

Then,
_ -y -
GF(x) = eXP( (1+7x) ”), M#O’
exp (—exp (—x)), if y=0
where v = limy_ o (ﬁ) .
» Analogue of Central Limit Theorem for MAX instead of
averages.
> G : Extreme Value Distribution, v : Extreme Value Index
» Can get similar result for MIN by G~ (x) =1 — G (—x), but
changes.
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[ID Pl via Extreme Value Theory

Theorem
Assume there exist sequences a, > 0, b, € R such that

. _ + . _ —
Jim Fum,(anx + by) = G (x) Jim_ Fm,(anx + bn) = G, (x)
with v = limy 00 (755 ) - with v = lim, o+ (A ) .

h(x) r(x)

Then, the optimal DP achieves a competitive ratio, as n — oo, of

(A=) maxd =177
m'”{r(1—7)’1}' {F(l—fy)’l}'
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[ID Pl via Extreme Value Theory

Theorem

Assume there exist sequences a, > 0, b, € R such that

- _ct
nl'_glo Fum,(anx + bn) = G ()

/

with v = limy_ o (ﬁ) )

Jim_ Fm,(anx + bp) = G, (x)

with v = limy,_o+ (r(lx)) .

Then, the optimal DP achieves a competitive ratio, as n — oo, of

(A=)
m'”{r(1—7)’1}'

(1-7)7"
max{ F(l—’y)’l}'

» Unified analysis of competitive ratio for both MAX and MIN.

P> Recovers and generalizes previous results of

and

» Competitive ratio has same form for both MAX and MIN!
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Asymptotic Competitive Ratio

3
CR

For v — —o0, by Stirling's approximation

(1= |
r--) '
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Asymptotic Competitive Ratio

cr’ cr’
2 2
0.776
1 0 1 2 -2 1 0 1 2
Y Y
Figure: ACR(7) for Max Figure: ACR(«y) for MIN
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Open Problems

> Extend Min-Pl to multiple selection.

> Are there D; for which we can get constant approximation in
the non-1ID setting?

» What can you get with 1 < k < n thresholds?
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Thank You!

Questions?

!

i)
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