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Secretary Problem

¢}4_ MATHEMATICAL GAMES
£ | v

L1

A fifth col
of

P n unknown values
Wy eeey Wy,

P Random order
P Step i:
1. Select w; and stop

2. lgnore w; and
continue

Pr[We select max; w;]?
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Sampling Phase Selection Phase

w.p. /2, wi €S,

1>1
wp. Yo, whe 51} = Pr{We selectm?xwz] > 1/4
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Sy Sy
Sampling Phase Selection Phase

w.p. /2, wi €S,

1>1
wp. Yo, whe 51} = Pr{We selectm?xwz] > 1/4

> Optimal = e (|S,| = 7/e)
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Given constraints F and (unknown) weights w on elements E,
select SC E

P online in uniformly random order,
P S e F (feasible),
P to maximize w(S) = > __sw,

Compare against OPT = maxpc 5 w(T)
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Given constraints F and (unknown) weights w on elements E,
select SC E

P online in uniformly random order,

P S e F (feasible),

P to maximize w(S) = > __sw,
Compare against OPT = maxp. 5 w(T)

Examples:
1. Matchings in G
2. Knapsacks

5. Matroids
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Matroid
F C 2¥ is a matroid on E if
1.0esF
2. Ac¢Fand BCA — BeF
3.V A, Be F with |[B| < |A|, 3e€ A\ Bst. B+ec ¥

= all maximal indep. sets have same size 7 (rank of matroid)
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Matroid
F C 2¥ is a matroid on E if
1.0esF
2. Ac¢Fand BCA — BeF
3.V A, Be F with |[B| < |A|, 3e€ A\ Bst. B+ec ¥

= all maximal indep. sets have same size 7 (rank of matroid)
Examples:

b F={eceSCE||S| <k} = k-uniform matroid
b F={ecSCE|Sisacyclic} = graphic matroid
b F= {v €S CR? | S is lin. indep.} = linear matroid
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Matroid Secretary Conjecture [BIK '07] Matroid
F C 2F is a matroid on E if
Given matroid M = (E, %), observe weight w of L bes
elements of E in a uniformly random order. Then, 3 * géiﬂ BedF
¢ > 0 and algorithm A which selects S C F 3 ‘\’Bféﬁ‘ifwith
immediately and irrevocably s.t. TeEAN Dt
1. Sed

2. w(S) > ¢ -maxpegs w(T)
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Matroid Secretary Conjecture [BIK '07] Matroid
F C 2F is a matroid on E if
Given matroid M = (E, %), observe weight w of L bes
elements of E in a uniformly random order. Then, 3 * géiai BedF
¢ > 0 and algorithm A which selects S C F 3 ‘\’Bféﬁ‘ifwith
immediately and irrevocably s.t. TeEAN Dt
1. Sed

2. w(S) > ¢ -maxpegs w(T)

Holds for many special classes.

Open for general matroids!

Strong Matroid Secretary Conjecture [BIK '07]

The Matroid Secretary Conjecture holds for ¢ = 1/e for all

matroids.
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k-Uniform Matroid
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k-Uniform Matroid

Can get ( (1/ \/_)) -approx. to OPT [K '05]
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Laminar Matroid

<hs
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Fix a “sampling” parameter p.

Greedy Improving Algorithm (p)

P S0
P Fori<1topn
P Skip i
P Fori+—pn+1lton

P Observe w;
P IfS+ied andiec OPT,

> S—S+i
P Return S
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P 3/16000-approx. [IW '11]
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» 3/16000-approx. [IW '11]
» 1/(3e/3) ~ 0.07-approx. [JSZ '13]
> 0.104-approx. [MTW '13]
P 0.192-approx. [STV '21]
> 0.210-approx. [HPZ '24]

> Greedy Improving Algorithm
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1. Optimal analysis of Greedy Improving algorithm for laminar
matroids:
1 —1In(2) ~ 0.306-approx.
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P Want to calculate

Pr[3 space fore] =
Pr|SNLy|<ki—1 A [SNLy| <ky—1 A ..]
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P Want to calculate

Pr[3 space fore] =
Pr|SNLy|<ki—1 A [SNLy| <ky—1 A ..]

P Computing Pr[|SNL,| <k,—1]is easy but

are correlated events!
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P Previous approaches (IW'11, MTW'13, HPZ'24):
Clever union bounds.
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P Previous approaches (IW'11, MTW'13, HPZ'24):
Clever union bounds.

P> Our approach: parking functions 77

Parking Functions
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P Assume e arrives at t, ~ U[0, 1]
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P Assume e arrives at t, ~ U[0, 1]

P Nla,b): # of improving elements in [a, b)

1. We show NJa,b) ~ Poi (r-1In(b/a))
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At each improving element e assign a label {(e) equal to its
relative rank at the time of arrival.
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P Assume e arrives at t, ~ U[0, 1]

P Nla,b): # of improving elements in [a, b)

1. We show Na,b) ~ Poi(r-1n(b/a))
Main Idea

At each improving element e assign a label {(e) equal to its
relative rank at the time of arrival.

Sy Sy
Sampling Phase Selection Phase

e, is not improving, f(e;) =1, fl(eg) =1
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P Fix e € OPT. e is selected iff
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P Fix e € OPT. e is selected iff

Let y denote the labels of improving elements before e
= suffices that, for every chain L; 5 e with rank(L;) = k;

iyl |y <k}l <k —1.
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P Fix e € OPT. e is selected iff
ISAL <k —1 A [SOLy <hy—1 A

Let y denote the labels of improving elements before e
= suffices that, for every chain L; 5 e with rank(L;) = k;

[{ie [|?/|]|yz§kg}| <k;,—L
To see this, order y from “inner” to “outer” chains.

S k'3 L3

<ky
= L
<k 2

Op 00« >\)OO( 0 1 Or O?C(‘)o(())()\)
°0 (\(‘O Om/oo ’0 0275706 0

O O()((WOO(
© > 0 o5 0

“ 0o o070

o \)“
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Parking Functions

A parking function of length n is a sequence s of n positive integers from

[n] s.t.
V¢ <mn,s contains >4 numbers that are <1

Anti-Parking Functions

An anti-parking function of length n is a sequence s of n positive integers
from [n] s.t.

V1 < n,s contains <i— 1 numbers that are <1

Prior uses: counting trees, hashing, etc.
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Parking Functions

A parking function of length n is a sequence s of n positive integers from
[n] s.t.
V¢ <mn,s contains >4 numbers that are <1

Anti-Parking Functions

An anti-parking function of length n is a sequence s of n positive integers
from [n] s.t.

V1 < n,s contains <i— 1 numbers that are <1

Prior uses: counting trees, hashing, etc.

Lemma

If y is an anti-parking function, then e is accepted by the Greedy
Improving algorithm.
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P> Technique generalizes to a labeling scheme.

We essentially associate a language £, for each matroid, and
show that y € £,;, = e € ALG.

P> Subsumes prior work on special classes of matroids.

P> Hopefully can be used on matroid classes for which the
conjecture is still open, to give constant-factor algorithms.
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Questions?




