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KILOVOLT 
MAGIC 

Sorensen is a maker of power supplies and 
doesn't make any of the "end-use" equip
ment mentioned below. Yet, some of these 
applications of Sorensen equipment by our 
customers are so novel that they may be of 
interest to you. Maybe they'll spark an idea: 

Open Sesame. Selection of sesame seeds 
for use in the manufacture of halvah-a fa
vorite confection of New York's lower East 
Side - was the job of kilovolts from one 
Sorensen Series 200 supply. Same principle 
can purify other grains and cereals, tobacco, 
and low-grade ores. 

Gold From Air. Gold spun off into thin air 
from a grinding or buffing wheel can quickly 
cause cash to vanish. Ditto with platinum or 
other precious metals. Clever Sorensen cus
tomers are putting this pay dirt back into 
the pay roll with an electrostatic recovery 
system-powered, of course, with a Sorensen 
h-v supply. 

Ignition damper. Everybody's heard about 
the high-voltage spark that sets off an ex
plosion. A new h-v system prevents explo
sions. High-voltage-from a Sorensen 9000 
Series -precipitates a sample of potentially 
explosive dusts; an alarm is given long be
fore the concentration becomes dangerous. 

Vanishing Volt.Amps. Dielectric testing 
with a-c is more or less standard. (Sorensen 
offers a complete line of h-v a-c testers, con
forming to ASTM standards.) However, 
where the test load has high capacitance, d-c 
testing can often effect substantial savings. 
In a typical problem, a 250-watt, d-c tester 
replaced a 25 kva a-c tester with equal re
sults, one-fourth the cost, and a 100: 1 reduc
tion in light bills. 

High-voltage or low, you'll find that Soren
sen has the answer to your controlled power 
problems. In addition to high-voltage equip
ment, the Sorensen line includes: regulated 
and unregulated d-c supplies, a-c line-voltage 
regulators, frequency changers, inverters, 
and converters. Contact your Sorensen rep
resentative, or write: Sorensen & Company, 
Richards Ave., South Norwalk, Conn. 9.64 

CONTROLLED 

S� POWER 

PRODUCTS 

... the widest line lets you make the wisest choice 

ISO. 

MATHEMATICAL GAMES 
A fifth collection 

of "brain-teasers" 

by Martin Gardner 

E
very eight months or so this de

partment presents an assortment 
of short problems drawn from 

various mathematical fields. This is the 
fifth such collection. The answers to the 
problems will be given here next month. 
I welcome letters from readers who find 
fault with an answer, solve a problem 
more elegantly, or generalize a problem 
in some interesting way. In the past I 
have tried to avoid puzzles that play 
verbal pranks on the reader, so I think 
it only fair to say that several of this 
month's "brain-teasers" are touched with 
whimsy. They must be read with care; 
otherwise you may find the road to a 
solution blocked by an unwarranted as
sumption. 

1. 

Mel Stover of Winnipeg was the first 
to send this amusing problem-amusing 
because of the ease with which even the 
best of geometers may fail to approach 
it properly. Given a triangle with one 
obtuse angle, is it possible to cut the 
'triangle into smaller triangles, all of 
them acute? (An acute triangle is a 
triangle with three acute angles. A right 
angle is of course neither acute nor ob
tuse.) If this cannot be done, give a 
proof of impossibility. If it can 'be done, 
what is the smallest number of acute 
triangles into which any obtuse triangle 
can be dissected? 

The illustration at right shows a typi
cal attempt that leads nowhere. The tri
angle has been divided into three acute 
triangles, but the fourth is obtuse, so 
nothing has been gained by the pre
ceding cuts. 

This delightful problem led me to ask 
myself: "What is the smallest number of 
acute triangles into which a square can 
be dissected?" For days I was convinced 
that nine was the answer; then suddenly 
I saw how to reduce it to eight. I won
der how many readers can discover an 

eight-triangle solution, or perhaps an 
even better one. I am unable to prove 
that eight is the minimum, though I 
strongly suspect that it is. 

2. 

In H. G. Wells's novel The First Men 
in the Moon our natural satellite is found 
to be inhabited by intelligent insect 
creatures who live in caverns below the 
surface. These creatures, let us assume, 
have a unit of distance that we shall call 
a "lunar." It was adopted because the 
moon's surface area, if expressed in 
square lunars, exactly equals the moon's 
volume in cubic lunars. The moon's di
ameter is 2,160. miles. How many miles 
long is a lunar? 

3. 
In 1958 John H. Fox, Jr., of the Min

neapolis-Honeywell Regulator Co., and 
L. Gerald Mamie of the Massachusetts 
Institute of Technology devised an un
usual betting game which they call Goo
gol. It is played as follows: Ask someone 
to take as many slips of paper as he 
pleases, and on each slip write a different 
positive number. The numbers may 
range from small fractions of one to a 
number the size of a "googol" (1 fol
lowed by a hundred zeros) or even 
larger. These slips are turned face-down 
and shuffled over the top of a table. One 
at a time you turn the slips face-up. The 
aim is to stop turning when you come to 
the number that you guess to be the 
largest of the series, You cannot go back 
and pick a previously turned slip. If 
you turn over all the slips, then of course 
you must pick the last one turned. 

Most people will suppose the odds 

Can this triangle be cut into acute ones? 

© 1960 SCIENTIFIC AMERICAN, INC

Secretary Problem

▶ 𝑛 unknown values
𝑤1, … , 𝑤𝑛

▶ Random order
▶ Step 𝑖:

1. Select 𝑤𝑖 and stop
2. Ignore 𝑤𝑖 and

continue

Pr[We select max𝑖 𝑤𝑖]?
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Secretary Problem

⋯

𝑆1
Sampling Phase

⋯

𝑆2
Selection Phase

w.p. 1/2, 𝑤∗
1 ∈ 𝑆2

w.p. 1/2, 𝑤∗
2 ∈ 𝑆1

} ⟹ 𝑃𝑟[We select max
𝑖

𝑤𝑖] ≥ 1/4

▶ Optimal ⟹ 1/𝑒 (|𝑆1| = 𝑛/𝑒)
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Generalizations?

Given constraints ℱ and (unknown) weights 𝑤 on elements 𝐸,
select 𝑆 ⊆ 𝐸

▶ online in uniformly random order,
▶ 𝑆 ∈ ℱ (feasible),
▶ to maximize 𝑤(𝑆) = ∑𝑒∈𝑆 𝑤𝑒

Compare against 𝑂𝑃𝑇 = max𝑇 ∈ℱ 𝑤(𝑇 )

Examples:
1. Matchings in 𝐺
2. Knapsacks

3. Matroids
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Matroid Primer

Matroid
ℱ ⊆ 2𝐸 is a matroid on 𝐸 if

1. ∅ ∈ ℱ
2. 𝐴 ∈ ℱ and 𝐵 ⊆ 𝐴 ⟹ 𝐵 ∈ ℱ
3. ∀ 𝐴, 𝐵 ∈ ℱ with |𝐵| < |𝐴|, ∃ 𝑒 ∈ 𝐴 ∖ 𝐵 s.t. 𝐵 + 𝑒 ∈ ℱ

⟹ all maximal indep. sets have same size 𝑟 (rank of matroid)

Examples:
▶ ℱ = {𝑒 ∈ 𝑆 ⊆ 𝐸 | |𝑆| ≤ 𝑘} ⟹ 𝑘-uniform matroid
▶ ℱ = {𝑒 ∈ 𝑆 ⊆ 𝐸 | 𝑆 is acyclic} ⟹ graphic matroid
▶ ℱ = {𝑣 ∈ 𝑆 ⊆ ℝ𝑑 ∣ 𝑆 is lin. indep.} ⟹ linear matroid
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Matroid Secretary

Matroid Secretary Conjecture [BIK ’07]
Given matroid 𝑀 = (𝐸, ℱ), observe weight 𝑤 of
elements of 𝐸 in a uniformly random order. Then, ∃
𝑐 > 0 and algorithm 𝒜 which selects 𝑆 ⊆ 𝐸
immediately and irrevocably s.t.

1. 𝑆 ∈ ℱ
2. 𝑤(𝑆) ≥ 𝑐 ⋅ max𝑇 ∈ℱ 𝑤(𝑇 )

Holds for many special classes.

Open for general matroids!

Strong Matroid Secretary Conjecture [BIK ’07]
The Matroid Secretary Conjecture holds for 𝑐 = 1/𝑒 for all
matroids.

16 / 61

Matroid
ℱ ⊆ 2𝐸 is a matroid on 𝐸 if

1. ∅ ∈ ℱ
2. 𝐴 ∈ ℱ and

𝐵 ⊆ 𝐴 ⟹ 𝐵 ∈ ℱ
3. ∀ 𝐴, 𝐵 ∈ ℱ with

|𝐵| < |𝐴|,
∃ 𝑒 ∈ 𝐴 ∖ 𝐵 s.t.
𝐵 + 𝑒 ∈ ℱ



Matroid Secretary

Matroid Secretary Conjecture [BIK ’07]
Given matroid 𝑀 = (𝐸, ℱ), observe weight 𝑤 of
elements of 𝐸 in a uniformly random order. Then, ∃
𝑐 > 0 and algorithm 𝒜 which selects 𝑆 ⊆ 𝐸
immediately and irrevocably s.t.

1. 𝑆 ∈ ℱ
2. 𝑤(𝑆) ≥ 𝑐 ⋅ max𝑇 ∈ℱ 𝑤(𝑇 )

Holds for many special classes.

Open for general matroids!

Strong Matroid Secretary Conjecture [BIK ’07]
The Matroid Secretary Conjecture holds for 𝑐 = 1/𝑒 for all
matroids.

17 / 61

Matroid
ℱ ⊆ 2𝐸 is a matroid on 𝐸 if

1. ∅ ∈ ℱ
2. 𝐴 ∈ ℱ and

𝐵 ⊆ 𝐴 ⟹ 𝐵 ∈ ℱ
3. ∀ 𝐴, 𝐵 ∈ ℱ with

|𝐵| < |𝐴|,
∃ 𝑒 ∈ 𝐴 ∖ 𝐵 s.t.
𝐵 + 𝑒 ∈ ℱ



Matroid Secretary

Matroid Secretary Conjecture [BIK ’07]
Given matroid 𝑀 = (𝐸, ℱ), observe weight 𝑤 of
elements of 𝐸 in a uniformly random order. Then, ∃
𝑐 > 0 and algorithm 𝒜 which selects 𝑆 ⊆ 𝐸
immediately and irrevocably s.t.

1. 𝑆 ∈ ℱ
2. 𝑤(𝑆) ≥ 𝑐 ⋅ max𝑇 ∈ℱ 𝑤(𝑇 )

Holds for many special classes.

Open for general matroids!

Strong Matroid Secretary Conjecture [BIK ’07]
The Matroid Secretary Conjecture holds for 𝑐 = 1/𝑒 for all
matroids.

18 / 61

Matroid
ℱ ⊆ 2𝐸 is a matroid on 𝐸 if

1. ∅ ∈ ℱ
2. 𝐴 ∈ ℱ and

𝐵 ⊆ 𝐴 ⟹ 𝐵 ∈ ℱ
3. ∀ 𝐴, 𝐵 ∈ ℱ with

|𝐵| < |𝐴|,
∃ 𝑒 ∈ 𝐴 ∖ 𝐵 s.t.
𝐵 + 𝑒 ∈ ℱ



Simplest Matroid?

𝑘-Uniform Matroid

Can get (1 − O (1/
√

𝑘))-approx. to 𝑂𝑃 𝑇 [K ’05]
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Slightly more complicated?
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Slightly more complicated?

Laminar Matroid
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Algorithm: Greedy Improving

Fix a “sampling” parameter 𝑝.

Greedy Improving Algorithm (𝑝)
▶ 𝑆 ← ∅
▶ For 𝑖 ← 1 to 𝑝 𝑛

▶ Skip 𝑖
▶ For 𝑖 ← 𝑝 𝑛 + 1 to 𝑛

▶ Observe 𝑤𝑖▶ If 𝑆 + 𝑖 ∈ ℱ and 𝑖 ∈ 𝑂𝑃𝑇≤𝑖
▶ 𝑆 ← 𝑆 + 𝑖

▶ Return 𝑆
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State-of-the-Art

▶ 3/16000-approx. [IW ’11]

▶ 1/(3𝑒
√

3) ≈ 0.07-approx. [JSZ ’13]
▶ 0.104-approx. [MTW ’13]
▶ 0.192-approx. [STV ’21]
▶ 0.210-approx. [HPZ ’24]
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State-of-the-Art

▶ 3/16000-approx. [IW ’11]
▶ 1/(3𝑒

√
3) ≈ 0.07-approx. [JSZ ’13]

▶ 0.104-approx. [MTW ’13]
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▶ Greedy Improving Algorithm
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Our Contributions

1. Optimal analysis of Greedy Improving algorithm for laminar
matroids:
1 − ln(2) ≈ 0.306-approx.

(Need different algorithms for strong MSC)
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Key Issue

▶ Want to calculate

Pr [ ∃ space for 𝑒 ] =
Pr [ |𝑆 ∩ 𝐿1| ≤ 𝑘1 − 1 ∧ |𝑆 ∩ 𝐿2| ≤ 𝑘2 − 1 ∧ …]

▶ Computing Pr [ |𝑆 ∩ 𝐿𝑖| ≤ 𝑘𝑖 − 1 ] is easy but

|𝑆 ∩ 𝐿𝑖| ≤ 𝑘𝑖 − 1 and |𝑆 ∩ 𝐿𝑗| ≤ 𝑘𝑗 − 1

are correlated events!
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Tools and Techniques

▶ Previous approaches (IW’11, MTW’13, HPZ’24):
Clever union bounds.

▶ Our approach: parking functions
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What Does an Optimal Analysis Look Like?

▶ Assume 𝑒 arrives at 𝑡𝑒 ∼ 𝑈[0, 1]

▶ 𝑁[𝑎, 𝑏): # of improving elements in [𝑎, 𝑏)
1. We show 𝑁[𝑎, 𝑏) ∼ 𝑃𝑜𝑖 (𝑟 ⋅ ln(𝑏/𝑎))

Main Idea
At each improving element 𝑒 assign a label ℓ(𝑒) equal to its
relative rank at the time of arrival.

𝑆1
Sampling Phase

𝑆2
Selection Phase
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𝑒4 is not improving, ℓ(𝑒5) = 1, ℓ(𝑒6) = 1
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When is 𝑒 Selected?
▶ Fix 𝑒 ∈ 𝑂𝑃𝑇 . 𝑒 is selected iff

|𝑆 ∩ 𝐿1| ≤ 𝑘1 − 1 ∧ |𝑆 ∩ 𝐿2| ≤ 𝑘2 − 1 ∧ …

Let 𝑦 denote the labels of improving elements before 𝑒
⟹ suffices that, for every chain 𝐿𝑗 ∋ 𝑒 with 𝑟𝑎𝑛𝑘(𝐿𝑗) = 𝑘𝑗

| {𝑖 ∈ [|𝑦|] ∣ 𝑦𝑖 ≤ 𝑘𝑗} | ≤ 𝑘𝑗 − 1.

To see this, order 𝑦 from “inner” to “outer” chains.
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Parking Functions

Parking Functions
A parking function of length 𝑛 is a sequence 𝑠 of 𝑛 positive integers from
[𝑛] s.t.

∀ 𝑖 ≤ 𝑛, 𝑠 contains ≥ 𝑖 numbers that are ≤ 𝑖

Anti-Parking Functions
An anti-parking function of length 𝑛 is a sequence 𝑠 of 𝑛 positive integers
from [𝑛] s.t.

∀ 𝑖 ≤ 𝑛, 𝑠 contains ≤ 𝑖 − 1 numbers that are ≤ 𝑖

Prior uses: counting trees, hashing, etc.

Lemma
If 𝑦 is an anti-parking function, then 𝑒 is accepted by the Greedy
Improving algorithm.
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Conclusion

▶ Technique generalizes to a labeling scheme.
We essentially associate a language ℒ𝑀 for each matroid, and
show that 𝑦 ∈ ℒ𝑀 ⟹ 𝑒 ∈ 𝐴𝐿𝐺.

▶ Subsumes prior work on special classes of matroids.
▶ Hopefully can be used on matroid classes for which the

conjecture is still open, to give constant-factor algorithms.
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Thanks!

Questions?
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