
Theoretical Computer Science 1019 (2024) 114814

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

On submodular prophet inequalities and correlation gap ✩,✩✩

Chandra Chekuri, Vasilis Livanos ∗

Dept. of Computer Science, University of Illinois, Urbana, IL 61801, United States of America

A R T I C L E I N F O A B S T R A C T

Keywords:

Combinatorial prophet inequality

Submodularity

OCRS

Prophet inequalities and secretary problems have been extensively studied in recent years due
to their elegance, connections to online algorithms, stochastic optimization, and mechanism
design problems in game theoretic settings. Rubinstein and Singla [31] developed a notion
of combinatorial prophet inequalities in order to generalize the standard prophet inequality
setting to combinatorial valuation functions such as submodular and subadditive functions. For
non-negative submodular functions they demonstrated a constant factor prophet inequality for
matroid constraints. Along the way they showed a variant of the correlation gap for non-negative
submodular functions.

In this paper we revisit their notion of correlation gap as well as the standard notion of
correlation gap and prove much tighter and cleaner bounds. Via these bounds and other insights
we obtain substantially improved constant factor combinatorial prophet inequalities for both
monotone and non-monotone submodular functions over any constraint that admits an Online
Contention Resolution Scheme. In addition to improved bounds we describe efficient polynomial-

time algorithms that achieve these bounds.

1. Introduction

Prophet inequalities arose from stochastic optimization and stopping theory in the ’70s. In the basic setting there are 𝑛 independent
real-valued random variables 𝑋1, 𝑋2, … , 𝑋𝑛 with prescribed distributions 1, … , 𝑛; they correspond to values of some items. An
online algorithm (or agent) knows the distributions of the random variables a priori but sees their realizations in an adversarial order,
and has to choose exactly one of them. The algorithm has to make an irrevocable decision on whether to accept an item or not when
it arrives. In the single item setting the first accepted item stops the process. The algorithm’s performance is measured with respect
to the value of a prophet who gets to see all the realizations and then picks the variable with the largest value. The expected value
of the prophet is 𝑉 ∗ = 𝔼[max𝑖 𝑋𝑖]. An online algorithm is 𝛼-competitive if its expected value is at least 𝛼𝑉 ∗. Krengel and Sucheston
[27] showed that 1∕2 is the optimal competitive ratio for the single item setting.

There has been substantial recent interest in prophet inequalities in theoretical computer science, due to their strong connections to
online mechanism design [22,9] (see [23,10] for surveys on Bayesian mechanism design). Subsequent work explored prophet inequal-

ity problems in more general settings. Of particular interest to us is the setting where multiple variables/items from 𝑋1 , 𝑋2, … , 𝑋𝑛

can be chosen such that the chosen items are feasible in some combinatorial constraint family. Two important examples are choosing

✩ This article belongs to Section A: Algorithms, automata, complexity and games, Edited by Paul Spirakis.
✩✩ Work on this paper partially supported by National Science Foundation grant CCF-1910149.

* Corresponding author.
Available online 30 August 2024
0304-3975/Published by Elsevier B.V.

E-mail addresses: chekuri@illinois.edu (C. Chekuri), livanos3@illinois.edu (V. Livanos).

https://doi.org/10.1016/j.tcs.2024.114814

Received 6 January 2022; Received in revised form 2 May 2024; Accepted 27 August 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:chekuri@illinois.edu
mailto:livanos3@illinois.edu
https://doi.org/10.1016/j.tcs.2024.114814
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2024.114814&domain=pdf
https://doi.org/10.1016/j.tcs.2024.114814

Theoretical Computer Science 1019 (2024) 114814C. Chekuri and V. Livanos

𝑘 items for some integer 𝑘 ≥ 1 [4] and a further generalization where the items chosen are independent in a matroid1 [26]. These
generalizations had several motivations including algorithmic game theory, combinatorial optimization, stochastic optimization, and
online algorithms. We refer the reader to surveys on prophet inequalities by Lucier [28] and Correa et al. [12] for several pointers to
the extensive literature on these problems and related topics.

Combinatorial Prophet Inequalities: Prophet inequalities were studied with modular/additive objective functions, meaning that
the total value of a subset 𝑆 of variables is simply the sum of their individual values. However, more general combinatorial objective
functions have several applications. For these objectives, the value of a subset of items from  = [𝑛] is specified by a set function
𝑓 ∶ 2 → ℝ. Prominent examples are submodular2 and subadditive3 set functions, and their special cases. Rubinstein and Singla
introduced a model of combinatorial prophet inequalities [31] which is the main object of study in this paper. We restrict our
attention to submodular objectives which form a rich class and, following [31], we refer to this as the Submodular Prophet Inequality
(SPI) problem.

The model defined by Rubinstein and Singla is the following generalization of the standard prophet inequality problem. The
input consists of 𝑛 independent random variables 𝑋1, 𝑋2, … , 𝑋𝑛. Unlike the standard prophet inequality where 𝑋𝑖 is a real-valued
random variable, in the combinatorial setting, each 𝑋𝑖 is a discrete-valued random variable over a finite set 𝑖. Thus 𝑖 is a discrete
probability distribution over 𝑖. For technical reasons one assumes that 1, 2, … , 𝑛 are mutually disjoint. Let  =

⋃
𝑖𝑖. There

is a non-negative submodular function 𝑓 ∶ 2 → ℝ+ defined over the ground set  . As in the standard prophet inequality setting,
the variables arrive in an adversarial order. After seeing the realization of a variable in the order, the algorithm has to make an
irrevocable decision to accept it or not. Its goal is to maximize the value, 𝑓 (𝑆), of the selected set 𝑆 ⊆ . The input also specifies
a downward-closed family of sets  ⊆ 2[𝑛], and the set 𝑆 of chosen variables must belongs to . The prophet is allowed to optimize
offline after seeing all the realizations and obtains a value equal to 𝔼[max𝑆∈ 𝑓 (

⋃
𝑖∈𝑆{𝑋𝑖})]. We say that an algorithm achieves a

competitive ratio of 𝛼 if the expected value of its choice is at least 𝛼 ⋅𝔼[max𝑆∈ 𝑓 (
⋃

𝑖∈𝑆{𝑋𝑖})]. Observe that the SPI model generalizes
the standard prophet inequality with additive functions and arbitrary downward-closed constraints.

We motivate a scenario for the SPI problem. Suppose we have an online advertising situation where one sees on each day (or
time slot) a customer of some type drawn from a known distribution. It is natural to assume that customer types are discrete (or
can be approximated by a discrete distribution). The agency has to irrevocably decide whether to show an ad to the customer when
they arrive, but has budget constraints which dictate that at most 𝑘 ads can be shown overall. This corresponds to picking 𝑘 out of
the 𝑛 random variables. As for the value of serving the ads, a decreasing marginal utility for customers of the same type is a natural
assumption and this is captured by submodular functions. The model proposed by [31] allows arbitrary submodular functions over
 , which allows for substantial generality.

Rubinstein and Singla presented an 𝑂(1)-competitive algorithm for SPI under a matroid constraint. The constant they obtained is
very large (in the thousands, although they did not try to optimize it) and they did not consider or emphasize the computational aspects
of the online algorithm. We note that prophet inequalities in the standard setting of modular/additive objectives are fairly small. For
instance, the well-known result of Kleinberg and Weinberg [26] showed a bound of 1∕2 even for arbitrary matroid constraints, and it
is also known that the bound for a cardinality constraint with 𝑘 items is (1 −𝑂(1∕

√
𝑘)) (hence it tends to 1 as 𝑘 →∞) [4]. Moreover,

[31] did not explicitly consider the case of monotone4 submodular functions, and did not generalize the constraint family beyond a
single matroid.

The approach of Rubinstein and Singla uses the standard relaxation and rounding paradigm and consists of two steps. First, they
observe that an upper bound on the prophet’s value for a given instance of SPI can be obtained by solving a mathematical programming
relaxation with a continuous extension 𝑓+ of 𝑓 called the concave closure.5 However, solving and rounding fractional solutions with
respect to 𝑓+ is not feasible for several reasons. Instead, they obtain a fractional solution 𝑥 to a different continuous extension of
𝑓 , known as the multilinear relaxation6 𝐹 , and then round it online via a rounding scheme known as an Online Contention Resolution
Scheme (OCRS), originally introduced by Feldman, Svensson and Zenklusen [20]. Informally, an OCRS for a constraint family is an
online rounding scheme for a given polyhedral relaxation of the constraints that always returns a feasible set 𝑆 , while providing some
guarantees with regards to the probability that each element is in 𝑆 . To obtain a competitive ratio they relate 𝐹 (𝑥) to 𝑓+(𝑥). The
ratio inf𝒙∈[0,1]𝑛

𝐹 (𝒙)
𝑓+(𝒙) is known as the correlation gap of 𝑓 . An important result in submodular optimization is that the correlation gap

for any monotone submodular function is at least (1 − 1∕𝑒) [3,8,33]. However, it is known that, for general non-negative submodular
functions (which can be non-monotone) the correlation gap can be arbitrarily small. Rubinstein and Singla circumvented this issue
by using a variant of the standard correlation gap, showing that inf𝒙∈[0,1]𝑛

𝐹max(𝒙)
𝑓+(𝒙) ≥ 1∕200, where 𝐹max is the multilinear relaxation of

𝑓max(𝑆) =max𝑇⊆𝑆 𝑓 (𝑇).
Our goal in this paper is to obtain improved bounds for SPI via a clean framework that applies to a wide variety of constraints.

This question was explicitly raised by Lucier in his survey on prophet inequalities [28]. Another motivation, related to the goal of

1 A constraint system  is downward-closed when for every feasible set 𝐴, all 𝐵 ⊆𝐴 are also feasible. A matroid is a non-empty downward-closed constraint system
where if 𝐴, 𝐵 ⊆  are both feasible and |𝐴| < |𝐵|, there exists an element 𝑒 ∈ 𝐵 ⧵ 𝐴 such that 𝐴 ∪ {𝑒} is also feasible. The feasible sets of a matroid are called
independent sets.

2 A real-valued set function 𝑓 ∶ 2 →ℝ is submodular if and only if 𝑓 (𝐴) + 𝑓 (𝐵) ≥ 𝑓 (𝐴 ∪𝐵) + 𝑓 (𝐴 ∩𝐵) for all 𝐴, 𝐵 ⊆ .
3 A real-valued set function 𝑓 ∶ 2 →ℝ is subadditive if 𝑓 (𝐴 ∪𝐵) ≤ 𝑓 (𝐴) + 𝑓 (𝐵) for all 𝐴, 𝐵 ⊆ . A non-negative submodular function is subadditive.
4 A real-valued set function 𝑓 is monotone if 𝑓 (𝐴) ≤ 𝑓 (𝐵) whenever 𝐴 ⊆ 𝐵.
5 For the formal definition of the concave closure see Definition 2.
2

6 For the formal definition of the multilinear relaxation see Definition 1.

Theoretical Computer Science 1019 (2024) 114814C. Chekuri and V. Livanos

obtaining improved bounds, is to improve the best-known bounds for the correlation gap, which plays a crucial role in submodular
optimization [11,34].

1.1. Our contributions

In this paper we make two high-level contributions:

1. We consider the correlation gap for non-negative submodular functions. For both the standard definition and the variant of [31],
we obtain substantially improved bounds.

2. We address and provide improvements to three aspects of the SPI problem: (i) improved constants for the prophet inequalities
for monotone and non-monotone functions, (ii) a clean black-box reduction to greedy Online Contention Resolution Schemes
that allows one to obtain combinatorial prophet inequalities for various other constraints beyond a single matroid constraint and
(iii) computational aspects of the prophet inequality that were not explicitly addressed in [31]. In essence, we answer the open
question in [28] in the affirmative.

We now give a formal statement of our results. We refer the reader to Section 2.1 for some basic definitions and background on
submodular functions, continuous extensions, the correlation gap and contention resolution schemes.

Correlation gap: For a non-negative submodular function, for any given 𝑝 ∈ [0, 1], there is a simple instance with 𝑛 = 2 where
𝐹 (𝒙) ≤ (1 − 𝑝)𝑓+(𝒙), and this implies that, as 𝑝 tends to 1, the correlation gap tends to 0. One way to overcome this is to restrict
attention to settings where 𝑝 is bounded away from 1. Nevertheless, there has been little work on precisely quantifying the correlation
gap as a function of this parameter. Our first theorem addresses this.

Theorem 1. Let 𝑓 ∶ 2 →ℝ≥0 be a non-negative submodular function and let 𝒙 ∈ [0, 1]𝑛, where 𝑛 = | |. Let 𝑝 = max𝑖 𝑥𝑖. Then 𝐹 (𝒙) ≥
(1 − 𝑝)(1 − 1∕𝑒)𝑓+(𝒙). Given any 𝑝 ∈ [0, 1] there are instances such that 𝐹 (𝒙) ≤ (1 − 𝑒−(1−𝑝))𝑓+(𝒙).

The upper bound of (1 − 𝑝)(1 − 1∕𝑒) is optimal when 𝑝 is close to 0 or when 𝑝 is close to 1. The lower bound on the gap that we
show, 1 − 𝑒−(1−𝑝), agrees nicely with the extremes, but we do not know whether it is the right bound for all ranges of 𝑝 and leave it
as an interesting open problem.

As stated earlier, Rubinstein and Singla [31] instead use the correlation gap of 𝑓max(𝑆) =max𝑇⊆𝑆 𝑓 (𝑇). 𝑓max is monotone, but in
general is not submodular, even when 𝑓 is. It is shown in [31] that for any non-negative submodular function 𝑓 , inf𝒙∈[0,1]𝑛

𝐹max(𝒙)
𝑓+(𝒙) ≥

1∕200, where 𝐹max is the multilinear extension of 𝑓max . For this variant of the correlation gap, we observe that known results on the
Measured Continuous Greedy (MCG) algorithm [19,2] show that 𝐹max(𝒙) ≥ 1

𝑒
𝑓+(𝒙).

We strengthen this observation by considering the parameter 𝑝.

Theorem 2. Let 𝑓 ∶ 2 →ℝ≥0 be a non-negative submodular function and let 𝒙 ∈ [0, 1]𝑛, where 𝑛 = | |. Let 𝑝 =max𝑖 𝑥𝑖. There exists a
point 𝒚 ∈ [0, 1]𝑛, where 𝒚 ≤ 𝒙 (coordinate wise), such that 𝐹 (𝒚) ≥max{ 1

𝑒
, (1 − 𝑝 − 1

𝑒
(1 + ln(1 − 𝑝)))}𝑓+(𝒙).

We obtain the preceding theorem as a corollary of the following.

Theorem 3. Let 𝑝 ∈ [0, 1), 𝑓 be a non-negative submodular function with multilinear extension 𝐹 and  be a downward-closed solvable
polytope7 on  , such that  ⊆ 𝑝 ⋅ [0, 1] (that is, if 𝒛 ∈  then 𝑧𝑖 ≤ 𝑝 for all 𝑖 ∈). Then, the output of the Measured Continuous Greedy
(MCG) algorithm on 𝐹 and  at time 𝑏 ∈ [0, 1] is a vector 𝒙(𝑏) ∈ 𝑏 ⋅ such that

𝐹 (𝒙(𝑏)) ≥
⎧⎪⎨⎪⎩
𝑏 ⋅ 𝑒−𝑏 ⋅max𝒛∈ 𝑓+(𝒛), 0 ≤ 𝑏 ≤ ln

(
1

1−𝑝

)
(
1 − 𝑝− 𝑒−𝑏 (1 + ln (1 − 𝑝))

)
⋅max𝒛∈ 𝑓+(𝒛), ln

(
1

1−𝑝

) ≤ 𝑏 ≤ 1.

Theorem 2 on its own already improves the constants obtained by Rubinstein and Singla in [31] for the SPI problem. Theorems 1

and 3 are even more useful when 𝑝 is small and we later that this can indeed be achieved in some cases, such as the SPI problem, via
a reduction to an instance with many “copies” per element.

Submodular Prophet Inequality: For SPI we follow the high level framework of [31] via the correlation gap and greedy.8 Online
Contention Resolution Schemes (OCRSs) [20]. We make two main contributions that lead to significantly improved constants as well
as clarity on the parameters that affect them. Specifically, we utilize a simple reduction to a new instance of SPI with small 𝑝, allowing

7 Informally, a polytope  is solvable if one can efficiently do linear optimization over it. A formal definition is given in Section 2.
3

8 The OCRSs that we will need in this paper are greedy OCRSs – for the formal definition see 6. We will sometimes abuse notation and omit the word greedy.

Theoretical Computer Science 1019 (2024) 114814C. Chekuri and V. Livanos

Table 1

A summary of our results for several feasibility constraints.

Feasibility constraint Competitive Ratio

Monotone Submodular General Submodular

Uniform matroid of rank 𝑘→∞ 1∕4.3 1∕17.2
Matroid 1∕7.4 1∕30
Matching 1∕9.5 1∕38
Knapsack 1∕17.5 1∕70
Intersection of 𝑘 matroids Ω(1∕𝑘) Ω(1∕𝑘)

us to use Theorems 1 and 3 to improve upon the constant obtained by [31]. Our second contribution concerns the generalization
of the approach of [31] to other feasibility constraints beyond matroids. The approach of Rubinstein and Singla relies on the fact
that, when the given constraint over  is a matroid, the resulting constraint over  is still a matroid, and thus the entire constraint
admits a greedy OCRS [20]. However, this does not generalize to other feasibility constraints. To handle this, we design a modified
algorithm that uses a given greedy OCRS for a constraint family over  in a black-box fashion and thus works for any constraint
that admits a greedy OCRS.

The competitive ratio that we achieve for a particular constraint family is dictated by the OCRS available for that family. Because
of this, any improvements to the guarantees of the known OCRSs, as well as any new OCRSs for other constraint families, immediately
generalize and imply improvements to our results. The approximation quality of the OCRS is governed by two parameters 𝑏, 𝑐 ∈ [0, 1]
via the notion of (𝑏, 𝑐)-selectability. For matroids there is (𝑏, 1 − 𝑏)-selectable OCRS for any 𝑏 ∈ [0, 1], while there is a (𝑏, 𝑒−2𝑏)-OCRS

for matching constraints and a
(
1 − 𝑡√

𝑘
,1 − exp(−𝑡

2

4)
)

-OCRS for the special case of a uniform matroid of rank 𝑘; see [20].9

Theorem 4 (Informal). For the SPI problem with a monotone submodular function 𝑓 over a constraint family with a (𝑏, 𝑐)-selectable OCRS,
there is a 𝑐 ⋅(𝑒−𝑏−𝜀)(1 −𝑒−𝑏)-competitive algorithm for any fixed 𝜀 > 0. For non-negative submodular functions there is a 𝑐4 ⋅(𝑒

−𝑏−𝜀)(1 −𝑒−𝑏)-
competitive algorithm for any fixed 𝜀 > 0. These competitive ratios can be achieved by an efficient randomized polynomial time algorithm,
assuming value oracle access to 𝑓 and efficiency of the corresponding OCRS.

Our results hold in the setting of an almighty adversary who can adaptively decide the ordering of the variables based on the
realization of all variables and the choices of the algorithm at each step. We note that the competitive ratios we obtain are explicit and
relatively small. We summarize our concrete competitive ratios for several constraints of interest in Table 1. OCRSs for constraints
can be composed nicely (similar to CRSs) and thus our black-box reduction is very useful.

1.2. Other related work

We have referred to recent surveys on prophet inequalities and related models [28,12]. An older survey on prophet inequalities
from a stopping theory point of view is due to Hill and Kertz [24]. Secretary problems are closely related to prophet inequalities. In
the classical version, an online algorithm sees 𝑛 adversarially chosen values in a random order and has to pick one item irrevocably,
aiming to maximize the probability of picking the highest value. A classical result of Dynkin [16] shows an optimal competitive ratio
of 1∕𝑒. A survey on the secretary problem and variants is due to Dinitz [13]. The work here is connected to submodular optimization,
stochastic optimization, online algorithms, and mechanism design which have extensive literature. It is infeasible to describe all the
related work; Singla’s thesis [32] touches upon several of these themes and has several pointers. Contention Resolution Schemes
(CRSs) have found many applications since their introduction [11]; in fact Bayesian mechanism design, posted price mechanisms
[9] and subsequent work by Yan [34], connecting mechanism design with the correlation gap, played an important role in [11].
Online CRSs were developed [20] with applications to Bayesian mechanism design as one of the main motivations and yield prophet
inequalities in the modular case.

Submodular functions and constraints such as cardinality, matroids and others provide generality and computational tractability.
It is possible to consider more general objective functions such as subadditive and monotone XOS functions, as well as more complex
and general feasibility constraints. In such settings one can ignore computational considerations and focus on the online competitive
ratio or assume access to a demand oracle (even though a demand oracle may be NP-Hard in general). We refer to [30,31] for some
recent work and pointers. Such functions have also been considered under the related model of “combinatorial auctions” [14,15,5],
in which a seller wants to sell distinct items to buyers that have combinatorial valuation functions for the items. The seller wishes
to maximize either the social welfare or the revenue. In this model, Dütting, Feldman, Kesselheim and Lucier [14] obtained a 2-

prophet inequality for submodular functions, while Dütting, Kesselheim and Lucier [15] obtained a 𝑂(log log𝑚) prophet inequality
for subadditive functions. For the latter, the authors also show that achieving a constant factor prophet inequality for subadditive
valuation functions is impossible via their techniques and requires a different approach.
4

9 For the uniform matroid of rank 𝑘 the OCRS we claim is not in [20] but it is easy to derive and was explicitly done in an unpublished senior thesis [25].

Theoretical Computer Science 1019 (2024) 114814C. Chekuri and V. Livanos

Finally, in the setting where the arrival order of the random variables is chosen uniformly at random, one can obtain improved
bounds via the use of Random Order CRSs, introduced in [2]. We discuss a variant of the SPI problem for this setting in brief in
Section 5 and we refer the reader to a survey by Gupta and Singla for more information on random order models [21].

Organization: Section 2 introduces our notation and provides background on submodular functions, constraint systems and con-

tention resolution schemes. Section 3 describes the relaxation of the prophet’s objective. Section 4 describes the algorithm and
analysis for SPI. We describe some open questions in Section 5.

The proof of Theorem 1 has been moved to Appendix A since we do not use it directly for our improvements in the bounds of the
SPI problem.

2. Preliminaries

2.1. Background and definitions

Let  be a finite ground set. A constraint family over  is simply a subset  ⊆ 2 ; a set 𝑆 ∈  is called feasible, while a set
𝑆 ∉  is called infeasible. We are interested only in downward-closed families of constraints;  is downward-closed if and only if
𝐴 ∈  implies that any set 𝐵 ⊂ 𝐴 is also in . Classical examples of downward-closed families include those induced by a matroid
on  or intersections of several matroids on  , independent sets of graphs, matchings in graphs and hypergraphs, boolean vectors
that satisfy packing constraints of the form 𝐴𝒙 ≤ 𝑏 for non-negative 𝐴, 𝑏, among many others. We will use the terminology ( , ) to
indicate a constraint family.

The maximum weight independent set problem over a constraint system ( , ) is the following: given 𝑤 ∶  → ℝ solve
max𝑆∈ 𝑤(𝑆) where 𝑤(𝑆) =

∑
𝑒∈ 𝑤(𝑒). Since many of these problems are NP-Hard, a common technique is to use polyhedral

(or more generally convex) relaxations. We say  ⊆ [0, 1] is a polyhedral relaxation of ( , ) if  is a polyhedron and 1𝑆 ∈  for
all 𝑆 ∈  (here 1𝑆 is the characteristic vector of 𝑆). We say that  is solvable if one can efficiently do linear optimization over  ,
that is, given 𝑤 ∶ →ℝ, there is a polynomial time algorithm that computes max𝒙∈

∑
𝑖 𝑤𝑖𝑥𝑖.

A real-valued set function 𝑓 ∶ {0, 1} →ℝ≥0 is called submodular if, for all 𝐴, 𝐵 ⊆ , it satisfies 𝑓 (𝐴) +𝑓 (𝐵) ≥ 𝑓 (𝐴 ∪𝐵) +𝑓 (𝐴 ∩
𝐵). 𝑓 is monotone if 𝑓 (𝐴) ≤ 𝑓 (𝐵) for all 𝐴 ⊆ 𝐵. In the rest of this paper we work with non-negative normalized functions that satisfy
𝑓 (∅) = 0 and 𝑓 (𝐴) ≥ 0 for all 𝐴 ⊆ . We often equate  with [𝑛] = {1, 2, … , 𝑛}. We use the terminology 𝑆+ 𝑖 and 𝑆− 𝑖 as shorthands
for 𝑆 ∪ {𝑖} and 𝑆 ⧵ {𝑖} respectively. The following continuous extensions of submodular functions to [0, 1] play an important role
in our discussion.

Definition 1 (Multilinear Extension). Let 𝑓 ∶ {0,1} →ℝ≥0. For any 𝒙 ∈ [0,1]𝑛, let 𝑆 ∼ 𝒙 denote a random set 𝑆 that contains each
element 𝑖 ∈ independently w.p. 𝑥𝑖. The multilinear extension of 𝑓 is defined as

𝐹 (𝒙) ∶= 𝔼
𝑆∼𝒙

[𝑓 (𝑆)] =
∑
𝑆⊆𝑁

𝑓 (𝑆)
∏
𝑖∈𝑆

𝑥𝑖

∏
𝑖∉𝑆

(1 − 𝑥𝑖).

It should be noted that via the multilinear relaxation, the polyhedral approach to approximation has been extended successfully
to submodular function maximization [8,11,6].

Definition 2 (Concave Closure). Let 𝑓 ∶ {0,1} → ℝ≥0. Moreover, let 1𝑆 denote the characteristic vector of a set 𝑆 ⊆ of length
𝑛 = | |. For any 𝒙 ∈ [0,1]𝑛, the concave closure of 𝑓 is defined as

𝑓+(𝒙) ∶= max
𝒂∈[0,1]2

{ ∑
𝑆⊆

𝑎𝑆𝑓 (𝑆)
||||||

∑
𝑆⊆

𝑎𝑆 = 1,
∑
𝑆⊆

𝑎𝑆1𝑆 = 𝒙

}
.

𝑓+(𝒙) can be interpreted as the maximum expected value of 𝑓 (𝑅) where 𝑅 is generated by a distribution whose marginal values
are given by 𝒙. Since 𝐹 (𝒙) corresponds to the product distribution defined by 𝒙, which is a specific distribution, it follows that
𝐹 (𝒙) ≤ 𝑓+(𝒙) for all 𝒙. The correlation gap, introduced in the work of Agrawal, Ding, Saberi and Ye [3], provides an inequality in the
opposite direction.

Definition 3 (Correlation Gap). Let 𝑓 ∶ {0,1} → ℝ≥0 be a set function and 𝐹 , 𝑓+ denote its multilinear relaxation and concave
closure respectively. The correlation gap of 𝑓 is defined as

inf
𝒙∈[0,1]| | 𝐹 (𝒙)

𝑓+(𝒙)
.

It is easy to see that the correlation gap of modular/additive functions is 1. An important result in submodular optimization is
that the correlation gap is at most 1 −1∕𝑒 for any monotone submodular function [3,8,33]. However, it is known that the correlation
5

gap for general non-negative submodular functions (which can be non-monotone) can be arbitrarily small.

Theoretical Computer Science 1019 (2024) 114814C. Chekuri and V. Livanos

Contention Resolution Schemes: These are rounding schemes introduced in [11] for submodular function maximization. For the re-

maining definitions of this section, 𝑅(𝒙) denotes a random subset of  where each 𝑖 ∈ appears independently with probability
𝑥𝑖.

Definition 4 (Contention Resolution Scheme). Let 𝑏, 𝑐 ∈ [0, 1]. A (𝑏, 𝑐)-balanced Contention Resolution Scheme 𝜋 for  is a procedure
that for every 𝒙 ∈ 𝑏 ⋅ and 𝐴 ⊆ , returns a random set 𝜋𝒙(𝐴) ⊆𝐴 ∩ support(𝒙) and satisfies the following properties:

1. 𝜋𝒙(𝐴) ∈  with probability 1, ∀𝐴 ⊆ , 𝒙 ∈ 𝑏 ⋅ , and

2. for all 𝑖 ∈ support(𝒙), Pr
[
𝑖 ∈ 𝜋𝒙(𝑅(𝒙)) || 𝑖 ∈𝑅(𝒙)

] ≥ 𝑐, ∀𝒙 ∈ 𝑏 ⋅ .

The scheme is said to be monotone if Pr
[
𝑖 ∈ 𝜋𝒙(𝐴1)

] ≥ Pr
[
𝑖 ∈ 𝜋𝒙(𝐴2)

]
whenever 𝑖 ∈𝐴1 ⊆𝐴2.

CRSs are offline rounding schemes. Online Contention Resolution Schemes (OCRS) were introduced by Feldman, Svensson and
Zenklusen [20] to handle online settings such as the SPI problem where the arrival order of the elements is adversarial.

Definition 5 (Online Contention Resolution Scheme (OCRS)). Let us consider the following online selection setting. A point 𝒙 ∈  is
given and let 𝑅(𝒙) be a random subset of active elements. The elements 𝑒 ∈  reveal one by one whether they are active, i.e.,
𝑒 ∈ 𝑅(𝒙), and the decision whether to select an active element is taken irrevocably before the next element is revealed. An Online
Contention Resolution Scheme for  is an online algorithm that selects a subset 𝐼 ⊆ 𝑅(𝒙) such that 1𝐼 ∈  .

Monotonicity of a CRS is important for rounding the multilinear relaxation of submodular functions [11], although such a condition
is not needed for modular functions. In the online setting, [20] defines the notion of a greedy OCRS which is helpful in rounding for
submodular functions.

Definition 6 (Greedy OCRS). Let  ⊆ [0,1]𝑛 be a relaxation for the feasible sets  ⊆ 2 . A greedy OCRS 𝜋 for  is an OCRS that for
any 𝒙 ∈  defines a downward-closed subfamily of feasible sets 𝜋,𝒙 ⊆  , and an element 𝑒 is selected when it arrives if, together
with the already selected elements, the obtained set is in 𝜋,𝒙 . If the choice of 𝜋,𝒙 given 𝒙 is randomized, we talk about a randomized
greedy OCRS; otherwise, we talk about a deterministic greedy OCRS.

For a greedy OCRS, the quality of the approximation guaranteed with respect to the multilinear relaxation is governed by the
notion of (𝑏, 𝑐)-selectability [20].

Definition 7 ((𝑏, 𝑐)-selectability). Let 𝑏, 𝑐 ∈ [0, 1]. A greedy OCRS for  is (𝑏, 𝑐)-selectable if for any 𝒙 ∈ 𝑏 ⋅ , we have

Pr
[
𝐼 ∪ {𝑒} ∈ 𝜋,𝒙 ∀𝐼 ⊆ 𝑅(𝒙), 𝐼 ∈ 𝜋,𝒙

] ≥ 𝑐, ∀𝑒 ∈ .

We introduce the following notation, which will be useful in our analysis when dealing with the input constraints.

Definition 8 (Blowup of a Ground Set). Let  denote a finite set, and  ′ denote another finite set, to be defined, with | | ≤ | ′|.
Suppose for each 𝑒 ∈ there is an associated finite non-empty set 𝐴𝑒 ⊆ ′ such that the sets 𝐴𝑒, 𝑒 ∈ are mutually disjoint. Let
 = {𝐴𝑒 ∣ 𝑒 ∈𝑁}. We call  ′ =

⋃
𝑒∈𝑁 𝐴𝑒 the blowup of  by .

Definition 9 (Partition Extension of a Constraint). Let  = ( , ) be a downward-closed constraint family over  . Consider a blowup
 ′ of  induced by sets 𝐴𝑒, 𝑒 ∈ . Consider the function 𝑔 ∶ ′ → where 𝑔(𝑒′) = 𝑒 if and only if 𝑒′ ∈𝐴𝑒. The partition extension

of , denoted by ′, is a constraint family ( ′, ′) where

′
𝐴
=
{
𝑆 ⊆ ′ || 𝑔(𝑆) ∈  and ∀𝑒 ∈ , |𝐴𝑒 ∩𝑆| ≤ 1

}
.

2.2. Useful lemmas

Below we state two lemmas regarding sampling and submodular functions that we need.

Lemma 1 (Lemma 2.2 from [7]). Let 𝑓 ∶ 2 → ℝ≥0 be submodular. Denote by 𝐴(𝑝) a random subset of 𝐴 where each element appears
with probability at most 𝑝 (not necessarily independently). Then,

𝔼[𝑓 (𝐴(𝑝))] ≥ (1 − 𝑝) ⋅ 𝑓 (∅).

Lemma 2 (Lemma 2.2 from [33]). Let 𝑔 ∶ 2 → ℝ≥0 be submodular. Denote by 𝐴(𝑝) a random subset of 𝐴 where each element appears
with probability exactly 𝑝 (not necessarily independently). Then
6

𝔼[𝑔(𝐴(𝑝))] ≥ (1 − 𝑝) ⋅ 𝑔(∅) + 𝑝 ⋅ 𝑔(𝐴).

Theoretical Computer Science 1019 (2024) 114814C. Chekuri and V. Livanos

3. Submodular prophet inequality problem

In the Submodular Prophet Inequality (SPI) problem, we are given 𝑛 random variables 𝑋1, … , 𝑋𝑛 following (known) distributions
𝐷1, … , 𝐷𝑛, along with a constraint  on  = {1, 2, … , 𝑛}. The random variables are arranged in adversarial (worst-case) order. Let
𝑖 denote the image (range) of 𝑋𝑖, and  denote the feasible sets of .

The online algorithm starts with a set 𝑆 = ∅ of selected elements and a set 𝑍 = ∅ of selected indices from  . At the 𝑖-th time step,
it is presented with the realization 𝑒 ∈𝑖 of 𝑋𝑖. At that moment, it has to decide irrevocably whether to include 𝑒 in 𝑆 (and hence
𝑖 in 𝑍) or not, subject to 𝑍 remaining feasible in . The algorithm is also given a non-negative submodular function 𝑓 ∶ →ℝ≥0,
where  ≜⋃𝑛

𝑖=1𝑖. The algorithm’s objective is to maximize 𝑓 (𝑆), subject to 𝑍 being feasible in .

In this model, we are comparing against the almighty adversary who already knows all realizations and can adaptively change
the order in which to reveal the random variables based on the algorithm’s actions so far and also the random coins it uses (if the
algorithm is randomized). The prophet/adversary will select the best possible set 𝑆∗ according to the constraints with knowledge of
the realizations. Thus, we compare the expected value of the online algorithm against the expected value of the prophet, which is

OPT = 𝔼
𝑿

[
max
𝑇∈ 𝑓

({
𝑋𝑖

|| 𝑖 ∈ 𝑇
})]

.

Later, we will use an OCRS to round the fractional solution we obtain in this section. Since 𝑓 is defined over  but the constraint
given is over  , we cannot immediately apply an OCRS for rounding. To overcome this issue, we view  as the blowup of  with
respect to

{𝑖

}𝑛

𝑖=1. On each step 𝑖, only one element arrives. Therefore, our input constraint  is equivalent to a new constraint ′

on  , where we are allowed to pick only one element from each 𝑖. Notice that this is exactly the partition extension ′ = ( , ′)
of .

We also denote 𝑿 =
{
𝑋1,𝑋2,… ,𝑋𝑛

}
and 𝑫 =

{
𝐷1,𝐷2,… ,𝐷𝑛

}
. For an element 𝑒 ∈𝑖 we let 𝐷𝑖(𝑒) denote the probability of 𝑒

being realized; we also use the notation (𝑒) to denote the probability of 𝑒 ∈ when we do not need to specify the part it belongs
to. Note that the elements within 𝑖 are correlated and hence we do not have a product distribution on  .

Algorithmic approach: Following the description in Section 1, we design an online algorithm following the general approach of [31]

but with technical differences. First, we obtain a relaxation of the prophet’s objective. Afterwards, to design an online algorithm, we
obtain an offline fractional point 𝒛 based on the input, and round it online using a greedy OCRS and other tools. In this section, we
describe the relaxation of the prophet’s objective and how to obtain an offline fractional point 𝒛. The process of rounding 𝒛 online
using a greedy OCRS is presented in Section 4.

Before we proceed, we describe a simple but technically important reduction that allows us to obtain improved bounds.

Observation 5 (Reduction to small probabilities). Let 𝐼 = ( ,  , 𝑫, 𝑿, 𝑓, ) be an instance of the Submodular Prophet Inequality problem.
For every fixed 𝜀 > 0, there is a reduction of 𝐼 to another instance 𝐼 ′ = ( ,  ′, 𝑫′, 𝒀 , 𝑔, ) of the SPI problem such that (i) for all 𝑒 ∈ ′,
𝑫′(𝑒) ≤ 𝜀 and (ii) there exists an 𝛼-competitive algorithm for 𝐼 if and only if there exists an 𝛼-competitive algorithm for 𝐼 ′.

Remark 1. The reduction’s simplicity may make the reader wonder why it is useful in achieving improved bounds. The reason is a
combination of the model and the power of submodularity. The fact that we can only pick a single element from each 𝑖 allows us
to make copies of the elements, and we can use a derived submodular function to treat the copies as a single element.

We describe the reduction in Appendix B, and sketch its correctness since it is rather simple and easy to see, though tedious to
formally prove. The reduction to small probabilities allows us to use improved correlation gaps, as well as obtain better bounds in
the rounding algorithm.

3.1. An upper bound on the prophet’s value:

Let  denote a solvable polyhedral relaxation of . Then one can easily develop a solvable polyhedral relaxation of ′ as follows:

 ′ =

{
𝒚 ∈ [0,1]| | ||||||

∑
𝑒∈𝑖

𝑦𝑒 = 𝑥𝑖, 𝑖 ∈ [𝑛],𝒙 ∈ 
}

.

Consider any algorithm, including an offline algorithm, that computes a feasible output given the realizations of the random
variables. For any fixed algorithm  (deterministic or randomized) we have a probability 𝑝(𝑒) for each 𝑒 ∈  appearing in the
output of . Since an element 𝑒 ∈ is realized with probability (𝑒), 𝑒 cannot appear in the output of  with probability more than
(𝑒). Moreover, for a given realization, each output of the algorithm is feasible. Putting these facts together we obtain the following
observation.

Observation 6. Let  be any online or offline algorithm for a given instance of the problem. Let 𝑝(𝑒) denote the probability that 𝑒 is in the
output of . Then the vector 𝒑 is in the polytope{ }
7

 ′′ = 𝒛 ∈ [0,1]| | ||| 𝒛 ∈  ′, 𝑧𝑒 ≤(𝑒) 𝑒 ∈ .

Theoretical Computer Science 1019 (2024) 114814C. Chekuri and V. Livanos

We are now ready to proceed with the relaxation of the prophet’s objective.

Claim 1. Consider an instance of the Submodular Prophet Inequality problem. Then

max
𝒛∈ ′′

𝑓+(𝒛) ≥OPT.

Proof. Fix an optimal strategy for the prophet and let 𝒚∗ ∈ [0, 1]| | denote the vector of probabilities of the elements appearing in
the output of the prophet’s strategy. We have 𝒚∗ ∈  ′′. By the definition of the concave closure of 𝑓 , 𝑓+(𝒚∗) maximizes the value of
𝑓 among all distributions with the marginals 𝒚∗ (note that the distribution that achieves this may not be a feasible strategy for any
algorithm). Therefore, 𝑓+(𝒚∗) ≥OPT, which also implies that max𝒛∈ ′′ 𝑓+(𝒛) ≥OPT. □

3.2. Fractional solution and correlation gap

From Claim 1, max𝒛∈ ′′ 𝑓+(𝒛) ≥ OPT. Since OCRSs are designed to relate the quality of their output to that of the multilinear
relaxation, we need to relate 𝐹 (𝒛) to 𝑓+(𝒛) and hence to OPT. We present two different ways to do this — via a direct correlation
gap and via the Measured Continuous Greedy (MCG) algorithm — with the second yielding strictly better results than the first.

The direct correlation gap approach The first approach is not computationally efficient and relies on optimally solving the optimization
problem max𝒛∈ ′′ 𝑓+(𝒛). Let 𝒛∗ be the optimum solution. We can then use the correlation gap to relate 𝐹 (𝒛∗) to OPT. For monotone
functions we have 𝐹 (𝒛∗) ≥ (1 − 1∕𝑒)𝑓+(𝒛∗) ≥ (1 − 1∕𝑒)OPT. For non-negative functions we can use Theorem 1, the proof of which,
along with all results on the direct correlation gap approach, can be found in Appendix A. Following the reduction that we described
earlier, we can assume that 𝑧∗

𝑒
≤ max𝑒𝑫(𝑒) ≤ 𝜀 for all 𝑒 and this implies, via Theorem 1 that 𝐹 (𝒛∗) ≥ (1 − 𝜀)(1 − 1∕𝑒)𝑓+(𝒛∗) ≥

(1 − 𝜀)(1 − 1∕𝑒)OPT. In rounding it is useful to have a solution 𝒛 ∈ 𝑏 ⋅  ′′ for some parameter 𝑏 ∈ (0, 1). One can of course use
𝒛 = 𝑏𝒛∗ and in this case, we can use the concavity of 𝑓+ to see that 𝑓+(𝑏𝒛∗) ≥ 𝑏𝑓+(𝒛∗), and then apply the correlation gap to
𝑏𝒛∗ to conclude that, in the monotone case, 𝐹 (𝑏𝒛∗) ≥ 𝑏(1 − 1∕𝑒)𝑓+(𝒛∗) ≥ 𝑏(1 − 1∕𝑒)OPT and, in the non-monotone case, 𝐹 (𝑏𝒛∗) ≥
𝑏(1 − 𝜀)(1 − 1∕𝑒)𝑓+(𝒛∗) ≥ 𝑏(1 − 𝜀)(1 − 1∕𝑒)OPT.

The measured continuous greedy approach The second approach is algorithmic and relies on the Measured Continuous Greedy (MCG)
algorithm and its properties. We state two relevant known results about the algorithm. For these results as well as Theorem 3, we
assume the submodular function 𝑓 is given via a value oracle, and that the algorithms are randomized and run in polynomial time
and are correct with high probability.

Lemma 3 (Lemma 4 of [1]). Let 𝑓 be a monotone submodular function with multilinear extension 𝐹 , and let  be a solvable downward-

closed polytope. Let 𝒙(𝑏) be solution produced by the Continuous Greedy algorithm on 𝐹 and  until time 𝑏 ∈ (0, 1]. Then (i) 𝒙(𝑏) ∈ 𝑏 ⋅ 
and (ii) 𝐹 (𝒙(𝑏)) ≥ (

1 − 𝑒−𝑏 − 𝑜(1)
)
⋅max𝒚∈ 𝑓+(𝒚).

For a general non-negative submodular function, the MCG algorithm achieves the following bound.

Lemma 4 (Lemma 8.3 of [2]). Let 𝑏 ∈ [0, 1], 𝑓 be a non-negative submodular function with multilinear extension 𝐹 , and let  be a
solvable downward-closed polytope. Then, the solution 𝒙(𝑏) ∈ [0,1]𝑛 produced by the MCG algorithm satisfies (i) 𝒙(𝑏) ∈ 𝑏 ⋅  and (ii)
𝐹 (𝒙(𝑏)) ≥ (

𝑏 ⋅ 𝑒−𝑏 − 𝜀
)
⋅max𝒚∈ 𝑓+(𝒚), for any fixed 𝜀 > 0.

The two preceding lemmas are algorithmic. If  is solvable then the underlying algorithms can be implemented efficiently. Based
on our reduction to small probabilities it is useful to consider whether the preceding lemmas can take advantage of this. No advantage
is possible in the monotone setting, however, we show below that one can indeed take advantage of the reduction when 𝑓 is non-

monotone. We provide a refined analysis of the standard bound of the MCG algorithm, which depends on a parameter 𝑝 that quantifies
the maximum value of any coordinate that is feasible in the polytope. For small enough 𝑝, Theorem 3 constitutes an improvement
over Lemma 4, which comprises the main result of this section. Notice that Theorem 2 follows from Theorem 3 by setting 𝑏 = 1.

Theorem 3. Let 𝑝 ∈ [0, 1), 𝑓 be a non-negative submodular function with multilinear extension 𝐹 and  be a downward-closed solvable
polytope10 on  , such that  ⊆ 𝑝 ⋅ [0, 1] (that is, if 𝒛 ∈  then 𝑧𝑖 ≤ 𝑝 for all 𝑖 ∈). Then, the output of the Measured Continuous Greedy
(MCG) algorithm on 𝐹 and  at time 𝑏 ∈ [0, 1] is a vector 𝒙(𝑏) ∈ 𝑏 ⋅ such that

𝐹 (𝒙(𝑏)) ≥
⎧⎪⎨⎪⎩
𝑏 ⋅ 𝑒−𝑏 ⋅max𝒛∈ 𝑓+(𝒛), 0 ≤ 𝑏 ≤ ln

(
1

1−𝑝

)
(
1 − 𝑝− 𝑒−𝑏 (1 + ln (1 − 𝑝))

)
⋅max𝒛∈ 𝑓+(𝒛), ln

(
1

1−𝑝

) ≤ 𝑏 ≤ 1.
8

10 Informally, a polytope  is solvable if one can efficiently do linear optimization over it. A formal definition is given in Section 2.

Theoretical Computer Science 1019 (2024) 114814C. Chekuri and V. Livanos

Remark 2. Notice that, for the SPI problem, due to our reduction, we can assume that all vectors 𝒛 ∈  ′′ have 𝑧𝑖 ≤ 𝜀′ for all 𝑖 ∈ ,
for any fixed constant 𝜀′ > 0. Therefore, for any fixed constant 𝜀 > 0, there exists an 𝜀′ such that

𝐹 (𝒙(𝑏)) ≥ (
1 − 𝑒−𝑏 − 𝜀

)
⋅max
𝒛∈ 𝑓+(𝒛),

where 𝒙(𝑏) ∈ 𝑏 ⋅ ′′ is the output of the MCG algorithm at time 𝑏.

Before we proceed with the proof of Theorem 3, we briefly sketch the idea implicit in prior work [19,2] that implies
𝐹max(𝒙) ≥ 1

𝑒
𝑓+(𝒙). Consider a downward-closed polytope  defined by all points in [0, 1]𝑛 dominated by the given point 𝒙:

 ∶=
{
𝒚 ∈ [0,1]𝑛 || ∀ 1 ≤ 𝑖 ≤ 𝑛, 𝑦𝑖 ≤ 𝑥𝑖

}
. Suppose we run the MCG algorithm on  . From Lemma 8.3 of [2] for 𝑏 = 1, for any 𝜀 > 0, the

algorithm can be used to find a point 𝒛𝜀 ∈  such that 𝐹 (𝒛𝜀) ≥
(
1
𝑒
− 𝜀

)
max𝒚∈ 𝑓+(𝒚) ≥ (

1
𝑒
− 𝜀

)
𝑓+(𝒙). Since such a point 𝒛𝜀 ∈ 

exists for any 𝜀 > 0, by the compactness of  and the continuity of 𝐹 and 𝑓+, it follows that there exists a point 𝒚 ∈  such that
𝐹 (𝒚) ≥ 1

𝑒
⋅ 𝑓+(𝒙). Also notice that 𝒙 ∈  , and thus

𝐹max(𝒙) = max
𝒛∈ 𝐹 (𝒛) ≥ 𝐹 (𝒚) ≥ 1

𝑒
⋅ 𝑓+(𝒙).

To prove Theorem 3, which generalizes Lemma 8.3 in [2], we use the same proof outline as above, but in the algorithm’s analysis,
we take advantage of the fact that ‖𝒙‖∞ ≤ 𝑝.

Proof of Theorem 3. Let 𝒙̂ = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝒛∈ 𝑓+(𝒛). Recall that there exists 𝜶 ∈ [0, 1]2 such that

𝑓+(𝒙̂) =
∑
𝑆⊆

𝛼𝑆𝑓 (𝑆),
∑
𝑆⊆

𝛼𝑆 = 1 and
∑
𝑆⊆

𝛼𝑆1𝑆 = 𝒙̂.

From the analysis of Measured Continuous Greedy and the fact that 𝒙(𝑏) ∈  , we know that, at time 𝑏, for all 𝑖 ∈ we have

𝑥𝑖(𝑏) ≤min{1 − 𝑒−𝑏, 𝑝}.

Let 𝒙 = 𝒙(𝑏), and, for 𝑆 ⊆ , consider a line of direction 𝒅𝑆 = (𝒙 ∨ 1𝑆) − 𝒙 = (1𝑆 − 𝒙) ∨ 𝟎. Notice that 𝟎 ≤ 𝒅𝑆 ≤ 1𝑆 for all 𝑆 ⊆ .
From Section 2.3 of [8], it follows that

𝒅𝑆 ⋅∇𝐹 (𝒙) ≥ 𝐹 (𝒙 ∨ 1𝑆) − 𝐹 (𝒙).

Since 𝑓 may not be monotone, ∇𝐹 (𝒙) may have negative entries. Let 𝒅′
𝑆

be a vector obtained from 𝒅𝑆 as follows:
(
𝒅′
𝑆

)
𝑖
=
(
𝒅𝑆

)
𝑖

if
∇𝐹 (𝒙)𝑖 ≥ 0, otherwise

(
𝒅′
𝑆

)
𝑖
= 0. We have 𝟎 ≤ 𝒅′

𝑆
≤ 𝒅𝑆 and,

𝒅′
𝑆
⋅∇𝐹 (𝒙) ≥max{0,𝒅𝑆 ⋅∇𝐹 (𝒙)} ≥max{0, 𝐹 (𝒙 ∨ 1𝑆) − 𝐹 (𝒙)}.

Since 𝒙(𝑏)𝑖 ≤min{1 − 𝑒−𝑏, 𝑝} for all 𝑖 ∈ , by Lemma III.5 of [19], we have

𝐹 (𝒙 ∨ 1𝑆) ≥ (
1 −min{1 − 𝑒−𝑏, 𝑝}

)
𝑓 (𝑆).

Therefore,

𝒅′
𝑆
⋅∇𝐹 (𝒙) ≥max{0, (1 − 𝑝)𝑓 (𝑆) − 𝐹 (𝒙), 𝑒−𝑏𝑓 (𝑆) − 𝐹 (𝒙)}

≥max{1 − 𝑝, 𝑒−𝑏}𝑓 (𝑆) − 𝐹 (𝒙).

Next, let 𝒅̂ =
∑

𝑆⊆ 𝛼𝑆𝒅
′
𝑆

. Since 𝒅𝑆 ≤ 1𝑆 and 𝒅′
𝑆
≤ 𝒅𝑆 , we have 𝒅′

𝑆
≤ 1𝑆 , and thus

𝒅̂ =
∑
𝑆⊆

𝛼𝑆𝒅
′
𝑆
≤ ∑

𝑆⊆
𝛼𝑆1𝑆 = 𝒙̂.

Since  is downward-closed and 𝒙̂ ∈  , we know that 𝒅̂ ∈  . Therefore, from the above and the fact that 𝒗max = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝒗∈ 𝒗 ⋅∇𝐹 (𝒙),

we have

𝑑𝐹 (𝒙(𝑏))
𝑑𝑏

= 𝒗max(𝒙) ⋅∇𝐹 (𝒙)

≥ 𝒅̂𝑆 ⋅∇𝐹 (𝒙)

=
∑
𝑆⊆

𝛼𝑆 ⋅ 𝒅′
𝑆
⋅∇𝐹 (𝒙)

≥ ∑
𝛼

(
max{1 − 𝑝, 𝑒−𝑏}𝑓 (𝑆) − 𝐹 (𝒙)

)

9

𝑆⊆
𝑆

Theoretical Computer Science 1019 (2024) 114814C. Chekuri and V. Livanos

≥max{1 − 𝑝, 𝑒−𝑏}
∑
𝑆⊆

𝛼𝑆𝑓 (𝑆) −
∑
𝑆⊆

𝛼𝑆𝐹 (𝒙)

≥max{1 − 𝑝, 𝑒−𝑏}𝑓+(𝒙̂) − 𝐹 (𝒙).

We proceed to solve the above differential inequality. For brevity, let 𝑦 = 𝐹 (𝒙). Then,

𝑑𝑦+𝑦𝑑𝑏 ≥ 𝑓+(𝒙̂)max{1 − 𝑝, 𝑒−𝑏}𝑑𝑏

𝑒𝑏 𝑑𝑦+𝑦𝑒𝑏 𝑑𝑏 ≥ 𝑓+(𝒙̂)max{(1 − 𝑝)𝑒𝑏,1}𝑑𝑏

𝑑
(
𝑦𝑒𝑏

) ≥ 𝑓+(𝒙̂)max{(1 − 𝑝)𝑒𝑏,1}𝑑𝑏

𝑦 ≥ 𝑒−𝑏𝑓+(𝒙̂)

𝑏

∫
0

max{(1 − 𝑝)𝑒𝑢,1}𝑑𝑢. (1)

Notice that, for 0 ≤ 𝑢 ≤ ln
(

1
1−𝑝

)
, we have (1 −𝑝)𝑒𝑢 ≤ 1, while for ln

(
1

1−𝑝

) ≤ 𝑢 ≤ 1, we have 1 ≤ (1 −𝑝)𝑒𝑢. Therefore, for 𝑏 ≤ ln
(

1
1−𝑝

)
,

(1) becomes

𝑦 ≥ 𝑒−𝑏𝑓+(𝒙̂)

𝑏

∫
0

1𝑑𝑢 = 𝑏 ⋅ 𝑒−𝑏 ⋅ 𝑓+(𝒙̂),

whereas for 𝑏 ≥ ln
(

1
1−𝑝

)
, (1) becomes

𝑦 ≥ 𝑒−𝑏𝑓+(𝒙̂)

⎛⎜⎜⎜⎜⎝
ln

(
1

1−𝑝

)
∫
0

1𝑑𝑢+

𝑏

∫
ln

(
1

1−𝑝

) (1 − 𝑝)𝑒𝑢 𝑑𝑢

⎞⎟⎟⎟⎟⎠
=
(
1 − 𝑝− 𝑒−𝑏 (1 + ln (1 − 𝑝))

)
𝑓+(𝒙̂).

We conclude that

𝐹 (𝒙(𝑏)) ≥
⎧⎪⎨⎪⎩
𝑏 ⋅ 𝑒−𝑏 ⋅max𝒛∈ 𝑓+(𝒛), 0 ≤ 𝑏 ≤ ln

(
1

1−𝑝

)
(
1 − 𝑝− 𝑒−𝑏 (1 + ln (1 − 𝑝))

)
⋅max𝒛∈ 𝑓+(𝒛), ln

(
1

1−𝑝

) ≤ 𝑏 ≤ 1. □

We summarize the results via both methods below. We observe that for both monotone and non-monotone functions the bounds
are best when 𝑝 → 0, which we can ensure via the reduction. Once we make this assumption, the bounds provided by the correlation
gap approach are essentially (1 − 1∕𝑒) when 𝑏 = 1 which is optimal. However, these bounds are matched by the Continuous Greedy
approach. When 𝑏 < 1, which will be the case when applying the rounding schemes, the bound in Lemma 3 and our new refined
bound in Theorem 3 are superior and have the further advantage of being computable in polynomial time.

4. Rounding the fractional solution

In the preceding section we described ways to obtain a vector 𝒛 ∈ 𝑏 ⋅ ′′ for some 𝑏 ∈ [0, 1] such that 𝐹 (𝒛) ≥ 𝛼 ⋅𝑂𝑃𝑇 for various
constants 𝛼 depending on the approach. In this section we show how to round 𝒛 in an online fashion. We follow the high-level
approach of [31] but refine it in several ways. We will use a greedy OCRS for  via the relaxation  as a black box. Recall that
our rounding needs to produce a feasible set in ′ with ground set  , while the OCRS is for the constraint on the variables of  .
Moreover the distribution 𝑫 is not a product distribution on  . These are the technical challenges that need to be overcome in the
algorithm and analysis. The quality of the output will depend on the properties of the OCRS for  . We assume that the greedy OCRS
for  is (𝑏, 𝑐)-selectable, where 𝑐 is some function of 𝑏. This depends on the specific constraint family  and the polyhedral relaxation
 . At the end of the section, we use known results to derive concrete competitive ratios for several constraint families of interest. We
note that 𝒛 ∈  ′′, which also implies that 𝒛 ∈  ′. For rounding purposes we only work with  ′ and  ;  ′′ is only necessary to obtain
an upper bound on OPT.

We rely on the certain parts of the analysis of OCRS for submodular function maximization from [20]. In the following, we will
use 𝜋 to denote the mapping function for the OCRS over the ground set  and the polytope  . Technically the mapping 𝜋 is a
function of 𝒙 ∈  and should be written as 𝜋𝒙 but we omit 𝒙 for notational simplicity. We also note that 𝜋 can be randomized. An
important definition from [20] in the analysis of OCRSs is the characteristic CRS of a greedy OCRS.

Definition 10 (Characteristic CRS of a greedy OCRS). The characteristic CRS 𝜋̄ of a greedy OCRS 𝜋 for a polytope  is a CRS for the
same polytope  . It is defined for an input 𝑥 ∈  and a set 𝐴 ⊆ by 𝜋̄(𝐴) = {𝑒 ∈𝐴 | 𝐼 ∪{𝑒} ∈ 𝜋,𝒙, ∀𝐼 ⊆ 𝐴, 𝐼 ∈ 𝜋,𝒙}. Notice that,
10

if 𝜋 is randomized, then 𝜋̄ is randomized as well.

Theoretical Computer Science 1019 (2024) 114814C. Chekuri and V. Livanos

We will also need the following known results from [20].

Observation 7 (Observation 3.3 of [20]). For every set 𝐴 ⊆ and a characteristic CRS 𝜋̄ of a greedy OCRS 𝜋, the set 𝜋̄(𝐴) is always a
subset of the elements selected by 𝜋 when the active elements are the elements of 𝐴.

Lemma 5 (Lemma 3.4 of [20]). The characteristic CRS 𝜋̄ of a (𝑏, 𝑐)-selectable greedy OCRS 𝜋 is (𝑏, 𝑐)-balanced and monotone.

For any 𝑆 ⊆ , we define 𝑆↓ ⊆ to be the projection of 𝑆 onto  , i.e.

𝑆↓ ∶=
{
𝑖 ∈ || 𝑆 ∩𝑖 ≠ ∅

}
.

Also, for a greedy OCRS 𝜋, we denote the characteristic CRS of 𝜋 by 𝜋̄. We now define a CRS 𝜋′ for  ′ that we will need for our
analysis later on. We define 𝜋′ using the characteristic CRS 𝜋̄ of 𝜋 as follows. For any set 𝑆 ⊆ ,

𝜋′(𝑆) ∶=
⋃

𝑖∈𝜋̄(𝑆↓)|𝑆∩𝑖|=1
(𝑆 ∩𝑖).

Intuitively, the characteristic CRS 𝜋̄ of a greedy OCRS 𝜋 returns, on input 𝐴 ⊆ the set of all elements in 𝐴 that are in 𝜋(𝐴) regardless
of the arrival order chosen by the adversary. Given a set 𝑆 ⊆ , 𝜋′(𝑆) is equal to the union of at most one element from each 𝑖 ,
for all such 𝑖 that are in the projection 𝑆↓ of 𝑆 and are selected by 𝜋̄ on input 𝑆↓. The next lemma relates the balance guarantee
provided by 𝜋′ given a selectability guarantee on 𝜋.

Lemma 6. For any (𝑏, 𝑐)-selectable greedy OCRS 𝜋 for  and 𝒛 ∈  ′, the CRS 𝜋′ is monotone and (𝑏, 𝑐 ⋅ 𝛾)-balanced, where 𝛾 =
min𝑖∈

∏
𝑒∈𝑖

(1 − 𝑧𝑒).

Proof. First, notice that 𝜋′ is a CRS, since 𝜋′(𝑆) ⊆ 𝑆 for all 𝑆 ⊆ . This follows immediately from the definition of 𝜋′ as 𝑆 ∩𝑖 ⊆ 𝑆

for all 𝑖 ∈ , 𝑆 ⊆ .

Next, we show that 𝜋′ is monotone. Fix an element 𝑒 ∈ 𝑆1 ⊆ 𝑆2 ⊆ , and an instantiation of 𝜋,𝒙 (this is relevant if the OCRS
is randomized). Let 𝑒 ∈𝑖 for some 𝑖 ∈ . Suppose 𝑒 ∈ 𝜋′(𝑆2). This implies that |𝑆2 ∩𝑖| = 1 and since 𝑆1 ⊆ 𝑆2 and 𝑒 ∈ 𝑆1, we
have |𝑆1 ∩𝑖| = 1. Furthermore, we know that 𝑖 ∈ 𝜋̄(𝑆2↓). Since 𝑆1 ⊆ 𝑆2, it follows that 𝑆1↓ ⊆ 𝑆2↓. By Lemma 5, we know that 𝜋̄
is monotone, and thus, since 𝑖 ∈ 𝜋̄(𝑆2↓), it follows that 𝑖 ∈ 𝜋̄(𝑆1↓). Therefore, we know that 𝑒 ∈ 𝜋′(𝑆1). Since 𝑒 ∈ 𝜋′(𝑆2) implies that
𝑒 ∈ 𝜋′(𝑆1), unconditioning over the instantiation of 𝜋,𝒙 yields

Pr
[
𝑒 ∈ 𝜋′(𝑆1)

] ≥ Pr
[
𝑒 ∈ 𝜋′(𝑆2)

]
.

We now show that 𝜋′ is (𝑏, 𝑐 ⋅ 𝛾)-balanced, for 𝛾 =min𝑖∈
∏

𝑒∈𝑖
(1 − 𝑧𝑒). It suffices to show that, for any 𝑒 ∈

Pr
𝑆∼𝑅(𝒛)

[
𝑒 ∈ 𝜋′(𝑆) || 𝑒 ∈ 𝑆

] ≥ 𝑐 ⋅ 𝛾.

Notice that, for any realization 𝑆 of 𝑅(𝒛), 𝑒 ∈ 𝜋′(𝑆) if and only if 𝑆 ∩𝑖 = {𝑒} and 𝑖 ∈ 𝜋̄(𝑆↓). Thus,

Pr
𝑆∼𝑅(𝒛)

[
𝑒 ∈ 𝜋′(𝑆) || 𝑒 ∈ 𝑆

]
= Pr

𝑆∼𝑅(𝒛)

[
𝑆 ∩𝑖 = {𝑒} ∧ 𝑖 ∈ 𝜋̄(𝑆↓)

||| 𝑒 ∈ 𝑆
]

= Pr
𝑆∼𝑅(𝒛)

[
𝑆 ∩𝑖 = {𝑒} || 𝑒 ∈ 𝑆

]
⋅ Pr
𝑆∼𝑅(𝒛)

[
𝑖 ∈ 𝜋̄(𝑆↓)

|||𝑆 ∩𝑖 = {𝑒}, 𝑒 ∈ 𝑆
]

= Pr
𝑆∼𝑅(𝒛)

[
𝑆 ∩𝑖 = {𝑒} || 𝑒 ∈ 𝑆

]
⋅ Pr
𝑆∼𝑅(𝒛)

[
𝑖 ∈ 𝜋̄(𝑆↓)

|||𝑆 ∩𝑖 = {𝑒}
]
, (2)

where the last equality follows from the fact that, if 𝑆 ∩𝑖 = {𝑒}, then 𝑒 ∈ 𝑆 . We lower bound each probability in (2) separately,
starting from

Pr
𝑆∼𝑅(𝒛)

[
𝑆 ∩𝑖 = {𝑒} || 𝑒 ∈ 𝑆

]
=

∏
𝑒′≠𝑒,𝑒′∈𝑖

(1 − 𝑧𝑒′) ≥
∏
𝑒′∈𝑖

(1 − 𝑧𝑒′) ≥ 𝛾. (3)

Also, notice that 𝜋̄ is a CRS over  and does not depend on which 𝑆 ∩𝑖 led to 𝑖 ∈ 𝑆↓. Therefore,

Pr
[
𝑖 ∈ 𝜋̄(𝑆↓)

||| 𝑖 ∈ 𝑆↓

]
= Pr

[
𝑖 ∈ 𝜋̄ ||𝑆 ∩𝑖 = 𝑇

]
for all 𝑇 ⊆𝑖 such that 𝑇 ≠ ∅. Specifically, for 𝑇 = {𝑒},[] []
11

Pr 𝑖 ∈ 𝜋̄ ||𝑆 ∩𝑖 = {𝑒} = Pr 𝑖 ∈ 𝜋̄(𝑆↓)
||| 𝑖 ∈ 𝑆↓ ≥ 𝑐, (4)

Theoretical Computer Science 1019 (2024) 114814C. Chekuri and V. Livanos

where the last inequality follows from the fact that 𝜋̄ is (𝑏, 𝑐)-balanced, by Lemma 5.

Combining (2), (3) and (4), we obtain

Pr
𝑆∼𝑅(𝒛)

[
𝑒 ∈ 𝜋′(𝑆) || 𝑒 ∈ 𝑆

] ≥ 𝑐 ⋅ 𝛾. □

Remark 3. Notice that via Observation 5, we can assume without loss of generality that, for any fixed 𝜀′ > 0, 𝑧𝑒 ≤ 𝜀′ for all 𝑒 ∈ .
By choosing 𝜀′ sufficiently small, for any fixed 𝜀 > 0 we have

𝛾 =min
𝑖∈

∏
𝑒∈𝑖

(1 − 𝑧𝑒) ≥min
𝑖∈

(∏
𝑒∈𝑖

𝑒−𝑧𝑒

)
− 𝜀 = min

𝑖∈
(
𝑒
−
∑

𝑒∈𝑖
𝑧𝑒
)
− 𝜀 ≥ 𝑒−𝑏 − 𝜀,

where the last inequality follows from the fact that 𝒛 ∈ 𝑏 ⋅ ′. Thus, 𝑐 ⋅ 𝛾 ≥ 𝑐 ⋅ (𝑒−𝑏 − 𝜀), and we obtain the following as corollary: For
any (𝑏, 𝑐)-selectable greedy OCRS 𝜋 for  and fixed 𝜀 > 0, 𝜋′ defined earlier is a

(
𝑏, 𝑐

(
𝑒−𝑏 − 𝜀

))
-balanced monotone CRS for  ′.

Now we are ready to describe our online algorithm. We describe and analyze the algorithms for monotone and non-monotone
cases separately, since there are technical differences. The algorithms are similar to the one in [31], however, the main technical
difference is that we use the OCRS for  as a black box; in [31] the authors use an OCRS over  since they work in the special case
of matroids.

4.1. Monotone non-negative submodular functions

We assume we have already computed a vector 𝒛 ∈ 𝑏 ⋅  ′′ for some 𝑏 ∈ [0, 1] such that 𝐹 (𝒛) ≥ 𝛼 ⋅ OPT for some 𝛼. Note that
the adversary is almighty and can alter the order in which it feeds the variables to the algorithm based on knowledge of the full
realizations of the variables and the actions of the algorithm so far.

Let 𝒛𝒊 denote the product distribution on 𝑖 defined by marginals 𝑧𝑖(𝑒), 𝑒 ∈𝑖. We write 𝑅 ∼ 𝒛𝒊 to denote a random set 𝑅 ⊆𝑖

realized according to this product distribution, and we denote 𝑧𝑖(𝑒) by 𝑧𝑒 when 𝑖 is clear from context or irrelevant. Furthermore, let
𝒙 ∈ [0, 1]𝑛 be the vector where 𝑥𝑖 = Pr𝑅∼𝒛𝒊

[
𝑅 ≠ ∅

]
= 1 −

∏
𝑒∈𝑖

(1 − 𝑧𝑒), for all 𝑖 ∈ . We assume that 𝒙 is the input vector to our
OCRS 𝜋𝑥 for  and its characteristic CRS 𝜋̄𝒙. To simplify our notation, we denote 𝜋𝒙 and 𝜋̄𝒙 by 𝜋 and 𝜋̄, respectively.

Algorithm 1: Algorithm for Monotone Non-Negative Submodular Functions.

Monotone Rounding( , 𝑓 ,𝑫,, 𝜋,𝒛)
𝑇ALG = ∅
for ℎ ← 1 to 𝑛 do

Let 𝑋𝑖 be variable that arrives on step ℎ
Let 𝑒 ∈𝑖 be the realization of 𝑋𝑖

With probability Pr𝑅∼𝒛𝒊 [𝑅={𝑒}]𝑖 (𝑒)
, set 𝑇𝑖 ← {𝑒}

Otherwise, set 𝑇𝑖 to be a random subset 𝑅 of 𝑖 , drawn according to 𝒛𝑖 , conditioned on |𝑅| ≠ 1
if 𝑇𝑖 ≠ ∅ then

Feed 𝑖 to OCRS 𝜋 for 
if 𝜋 accepts 𝑖 and 𝑇𝑖 = {𝑒} then

𝑇ALG ← 𝑇ALG ∪ {𝑒}
end

end

end

Return 𝑇ALG

The online algorithm on the ℎ-th step receives a random variable 𝑋𝑖 decided by the almighty adversary, and once 𝑋𝑖 is received
the algorithm also sees the realization 𝑒 ∈𝑖 of 𝑋𝑖 according to the distribution 𝑖. The online algorithm generates a random set
𝑇𝑖 ⊆𝑖 after seeing the realization 𝑒. The idea is that if one does not see the realization 𝑒 of 𝑋𝑖, the distribution of 𝑇𝑖 appears identical
to the product distribution generated by 𝒛𝒊. Note that, for 𝑆 ⊆𝑖, Pr𝑅∼𝒛𝒊 [𝑅 = 𝑆] =

∏
𝑒∈𝑆 𝑧𝑒

∏
𝑒∈ ⧵𝑆

(
1 − 𝑧𝑒

)
.

Lemma 7. For any 𝑖 ∈ and 𝑆 ⊆𝑖,

Pr[𝑇𝑖 = 𝑆] = Pr
𝑅∼𝒛𝒊

[𝑅 = 𝑆].

Proof. Let 𝑒 be the event that 𝑒 ∈𝑖 is the realization of 𝑋𝑖. Note that Pr[𝑒] =𝑖(𝑒). Consider 𝑆 ⊆𝑖 such that |𝑆| ≠ 1. We see
from the algorithm’s description that

Pr[𝑇𝑖 = 𝑆 ∣ 𝑒] =
(
1 −

Pr𝑅
[
𝑅
(
𝒛𝑖
)
= {𝑒}

]
𝐷𝑖(𝑒)

)
⋅

Pr𝑅
[
𝑅
(
𝒛𝑖
)
= 𝑆

]
1 − Pr𝑅

[|𝑅(
𝒛𝑖
) | = 1

] .
12

Summing up over all realizations of 𝑋𝑖, we have that, for any 𝑆 such that |𝑆| ≠ 1,

Theoretical Computer Science 1019 (2024) 114814C. Chekuri and V. Livanos

Pr
[
𝑇𝑖 = 𝑆

]
=

∑
𝑒∈𝑖

𝐷𝑖(𝑒) Pr
[
𝑇𝑖 = 𝑆 || 𝑒]

=
∑
𝑒∈𝑖

𝐷𝑖(𝑒)

(
1 −

Pr𝑅
[
𝑅
(
𝒛𝑖
)
= {𝑒}

]
𝐷𝑖(𝑒)

)
⋅

Pr𝑅
[
𝑅
(
𝒛𝑖
)
= 𝑆

]
1 − Pr𝑅

[|𝑅(
𝒛𝑖
) | = 1

]
=

Pr𝑅
[
𝑅
(
𝒛𝑖
)
= 𝑆

]
1 − Pr𝑅

[|𝑅(
𝒛𝑖
) | = 1

] ⋅ ∑
𝑒∈𝑖

𝐷𝑖(𝑒)

(
1 −

Pr𝑅
[
𝑅
(
𝒛𝑖
)
= {𝑒}

]
𝐷𝑖(𝑒)

)

=
Pr𝑅

[
𝑅
(
𝒛𝑖
)
= 𝑆

]
1 − Pr𝑅

[|𝑅(
𝒛𝑖
) | = 1

] ⋅(∑
𝑒∈𝑖

𝐷𝑖(𝑒) −
∑
𝑒∈𝑈𝑖

Pr
𝑅

[
𝑅
(
𝒛𝑖
)
= {𝑒}

])

=
Pr𝑅

[
𝑅
(
𝒛𝑖
)
= 𝑆

]
1 − Pr𝑅

[|𝑅(
𝒛𝑖
) | = 1

] ⋅(1 −
∑
𝑒∈𝑖

Pr
𝑅

[
𝑅
(
𝒛𝑖
)
= {𝑒}

])

=
Pr𝑅

[
𝑅
(
𝒛𝑖
)
= 𝑆

]
1 − Pr𝑅

[|𝑅(
𝒛𝑖
) | = 1

] ⋅ (1 − Pr
𝑅

[|𝑅(
𝒛𝑖
) | = 1

])
= Pr

𝑅

[
𝑅
(
𝒛𝑖
)
= 𝑆

]
.

Next, consider any set 𝑆 with |𝑆| = 1 and, without loss of generality, assume 𝑆 = {𝑒} for some 𝑒 ∈𝑖. It can be seen from the
algorithm description that 𝑇𝑖 = {𝑒} if and only if 𝑒 is the realization of 𝑋𝑖 and the algorithm succeeds in Line 5 in setting 𝑇𝑖 = {𝑒}
which happens with probability

Pr𝑅∼𝒛𝒊 [𝑅={𝑒}]𝑖(𝑒)
. Hence

Pr[𝑇𝑖 = {𝑒}] =𝑖(𝑒) ⋅
Pr𝑅∼𝒛𝒊 [𝑅 = {𝑒}]

𝑖(𝑒)
= Pr

𝑅∼𝒛𝒊
[𝑅 = {𝑒}] ,

as desired. □

We now analyze the expected value of 𝑓 (𝑇ALG) relying on the CRS 𝜋′ that we set up (this is inspired by the use of characteristic
CRS in [20]).

Lemma 8. Given a (𝑏, 𝑐)-selectable greedy OCRS 𝜋 for  , for any 𝒛 ∈ 𝑏 ⋅ ′′ and fixed 𝜀 > 0, Algorithm 1 returns a set 𝑇ALG ⊆ such that

𝔼
[
𝑓 (𝑇ALG)

] ≥ 𝑐
(
𝑒−𝑏 − 𝜀

)
⋅ 𝐹 (𝒛).

Proof. It is easy to see from the algorithm’s description that, for any 𝑋𝑖 , only the actual realization of 𝑋𝑖 can be potentially chosen
to be added to 𝑇ALG. Furthermore, the variables chosen by the algorithm are feasible in , since this is ensured by the OCRS.

Let 𝑇𝑖 be the random set generated by the online algorithm for variable 𝑋𝑖 . We see that 𝑇𝑖 is independent of 𝑇𝑖′ for 𝑖 ≠ 𝑖′, due to
independence of the realization of the random variables 𝑋1, … , 𝑋𝑛 and the independence of the coins used in the algorithm across all
steps in  . From Lemma 7, the distribution of 𝑇𝑖 is according to the product distribution 𝑅 ∼ 𝒛𝒊 over 𝑖. Let 𝑄 =

⋃𝑛

𝑖=1 𝑇𝑖. It follows
that 𝑄 is a random set drawn from the product distribution induced by 𝒛 over  . Consider the distribution of the set 𝑄↓ ∈ . Because
of the product distribution of 𝑄 it can be seen that the distribution of 𝑄↓ is a product distribution on  where 𝑖 ∈ appears in 𝑄↓

with probability 𝑥𝑖 = 1 −
∏

𝑒∈𝑖
(1 −𝑧𝑒) ≤ 𝑏 since 𝑧 ∈ 𝑏 ⋅ ′′. Note that the algorithm feeds 𝑄↓ to the OCRS 𝜋 which is (𝑏, 𝑐)-selectable.

Let 𝜋̄ be the characteristic CRS of 𝜋.

Fix a realization 𝑆 of 𝑄, along with an instantiation of 𝜋,𝒙 . Notice 𝑒 ∈ 𝑇ALG ∩𝑖 if and only if |𝑆 ∩𝑖| = {𝑒} and 𝑖 ∈ 𝜋(𝑆↓). In
fact,

𝑇ALG =
⋃

𝑖∈𝜋(𝑆↓)|𝑆∩𝑖|=1
(𝑆 ∩𝑖),

by the description of Algorithm 1. By Observation 7, we have 𝜋̄(𝐴) ⊆ 𝜋(𝐴) for any 𝐴 ⊆ , and thus 𝜋′(𝑆) ⊆ 𝑇ALG. Therefore, by the
monotonicity of 𝑓 , we have 𝑓

(
𝑇ALG

) ≥ 𝑓
(
𝜋′(𝑆)

)
, and by unconditioning

𝔼
[
𝑓
(
𝑇ALG

)] ≥ 𝔼
[
𝑓
(
𝜋′(𝑄)

)]
.

Finally, by Lemma 6 and Remark 3, we have that for any 𝒛 ∈ 𝑏 ⋅ ′′ and any fixed 𝜀 > 0,

𝔼
[
𝑓
(
𝜋′(𝑄)

)] ≥ 𝑐
(
𝑒−𝑏 − 𝜀

)
⋅ 𝐹 (𝒛),

which yields[()] ()

13

𝔼 𝑓 𝑇ALG ≥ 𝑐 𝑒−𝑏 − 𝜀 ⋅ 𝐹 (𝒛). □

Theoretical Computer Science 1019 (2024) 114814C. Chekuri and V. Livanos

We are now ready for the main theorem of this section, which follows from Lemmas 8 and 3, and Claim 1.

Theorem 8. Let ( , 𝑫, , 𝑓) be an instance of the Submodular Prophet Inequality model and let 𝑂𝑃𝑇 denote the prophet’s value. Given a
(𝑏, 𝑐)-selectable greedy OCRS 𝜋 for  , for a non-negative monotone submodular function 𝑓 , 𝒛∈ 𝑏 ⋅ ′′ and fixed 𝜀 > 0, Algorithm 1 returns
a set 𝑇ALG such that

𝔼
[
𝑓 (𝑇ALG)

] ≥ 𝑐
(
𝑒−𝑏 − 𝜀

)(
1 − 𝑒−𝑏

)
⋅OPT.

Next, we provide concrete results for several constraints, given an OCRS for these constraints. First, we summarize known greedy
OCRSs for various constraints of interest below.

Lemma 9 (Theorem 1.1 from [20]). There exist:

– For every 𝑏 ∈ [0, 1], a (𝑏, 1 − 𝑏)-selectable deterministic greedy OCRS for matroid polytopes.

– For every 𝑏 ∈ [0, 1], a (𝑏, 𝑒−2𝑏)-selectable randomized greedy OCRS for matching polytopes.

– For every 𝑏 ∈ [0, 12], a (𝑏, 1−2𝑏2−2𝑏)-selectable randomized greedy OCRS for the natural relaxation of a knapsack constraint.

By combining Lemma 9 with Theorem 8, we obtain the following corollary.

Corollary 1. Let ( , 𝑫, , 𝑓) be an instance of the Submodular Prophet Inequality model and let 𝑂𝑃𝑇 denote the prophet’s value. For a
non-negative monotone submodular function 𝑓 and any fixed 𝜀 > 0, Algorithm 1 returns a set 𝑇ALG such that

𝔼
𝑿, [𝑓 (𝑇ALG)] ≥ (1 − 𝑏)

(
𝑒−𝑏 − 𝜀

)(
1 − 𝑒−𝑏

)
⋅𝑂𝑃𝑇 , ∀𝑏 ∈ [0,1],

if  is a matroid constraint

𝔼
𝑿, [𝑓 (𝑇ALG)] ≥ 𝑒−2𝑏

(
𝑒−𝑏 − 𝜀

)(
1 − 𝑒−𝑏

)
⋅𝑂𝑃𝑇 , ∀𝑏 ∈ [0,1],

if  is a matching constraint

𝔼
𝑿, [𝑓 (𝑇ALG)] ≥ 1 − 2𝑏

2 − 2𝑏
(
𝑒−𝑏 − 𝜀

)(
1 − 𝑒−𝑏

)
⋅𝑂𝑃𝑇 , ∀𝑏 ∈

[
0, 1

2

]
,

if  is a knapsack constraint

where  = {𝑇 1, … , 𝑇 𝑛} denotes the set of random sets Algorithm 1 generates.

4.2. Non-negative submodular functions

Below we describe the algorithm for non-negative functions. It is very similar to the monotone case except for a minor change in
accepting an element 𝑒; in the final step, the algorithm tosses an additional random coin and accepts 𝑒 with probability 1∕2 (see Line
10 in the algorithm). This is inspired by the similar idea in [20] in handling non-monotone functions.

Algorithm 2: Algorithm for General Non-Negative Submodular Functions.

General Rounding( , 𝑓 ,𝑫,, 𝜋,𝒛)
𝑇ALG = ∅
for ℎ ← 1 to 𝑛 do

Let 𝑋𝑖 be variable that arrives on step ℎ
Let 𝑒 ∈𝑖 be the realization of 𝑋𝑖

With probability Pr𝑅∼𝒛𝒊 [𝑅={𝑒}]𝑖 (𝑒)
, set 𝑇𝑖 ← {𝑒}

Otherwise, set 𝑇𝑖 to be a random subset 𝑅 of 𝑖 , drawn according to 𝒛𝑖 , conditioned on |𝑅| ≠ 1
if 𝑇𝑖 ≠ ∅ then

Feed 𝑖 to OCRS 𝜋 for 
if 𝜋 accepts 𝑖 and 𝑇𝑖 = {𝑒} then

With probability 1
2
, 𝑇ALG ← 𝑇ALG ∪ {𝑒}

end

end

end

Return 𝑇ALG

Notice that Lemmas 6 and 7 still hold, as they do not depend on the monotonicity of 𝑓 . We present the following analogue of
14

Lemma 8 for general submodular functions. The proof of the next lemma relies on an argument similar to that in [20].

Theoretical Computer Science 1019 (2024) 114814C. Chekuri and V. Livanos

Lemma 10. Given a (𝑏, 𝑐)-selectable greedy OCRS 𝜋 for  , for any 𝒛 ∈ 𝑏 ⋅  ′′ and fixed 𝜀 > 0, Algorithm 2 returns a set 𝑇ALG ⊆ such
that

𝔼
[
𝑓 (𝑇ALG)

] ≥ 𝑐
(
𝑒−𝑏 − 𝜀

)
4

⋅ 𝐹 (𝒛).

Proof. At every step 𝑖, Algorithm 2 draws a random set 𝑇𝑖 according to the product distribution on 𝑖 with probabilities 𝒛𝒊, by
Lemma 7. Let 𝑄 =

⋃
𝑖∈ 𝑇𝑖. Since the realizations between the steps are independent, 𝑄 is a random set that follows the product

distribution on  with probabilities 𝒛. Fix a realization 𝑆 of 𝑄 and an instantiation of 𝜋,𝒙. Notice that 𝑒 ∈ 𝑇ALG ∩𝑖 if and only if |𝑆 ∩𝑖| = 1, 𝑖 ∈ 𝜋(𝑆↓) and the coin toss of Line 10 succeeds. In fact, if we denote

𝑊 =
⋃

𝑖∈𝜋(𝑆↓)|𝑆∩𝑖|=1
(𝑆 ∩𝑖),

we have that 𝔼
[
𝑓 (𝑇ALG)

]
= 𝔼[𝑓 (𝑊 (1∕2))], by the description of Algorithm 2. By Observation 7, we have 𝜋̄(𝐴) ⊆ 𝜋(𝐴) for any 𝐴 ⊆ ,

and thus 𝜋′(𝑆) ⊆𝑊 . For ease of notation, we denote 𝜋′(𝑆) by 𝐿. For our fixed choice of 𝑆 and 𝜋,𝒙, 𝐿 is deterministic. Therefore,
we can think of 𝑊 (1∕2) as obtained by first calculating a set 𝐿(1∕2) in which every element of 𝐿 appears with probability 1∕2
independently, and then adding to it a random set Δ ⊆ ⧵𝐿. The almighty prophet can control the order in which the elements arrive,
and thus can make the distribution of Δ depends on 𝐿(1∕2). However, Δ is guaranteed to contain every element with probability at
most 1∕2, for every given realization of 𝐿(1∕2). Thus,

𝔼
[
𝑓 (𝑊 (1∕2)) ||𝑆,𝜋,𝒙

]
= 𝔼

[
𝑓 (𝐿(1∕2) ∪ Δ) ||𝑆,𝜋,𝒙

]
=

∑
𝐵⊆𝐿

Pr
[
𝐿(1∕2) =𝐵 ||𝑆,𝜋,𝒙

]
⋅ 𝔼

[
𝑓 (𝐵 ∪Δ) || 𝑆,𝜋,𝒙

]
≥ ∑

𝐵⊆𝐿

Pr
[
𝐿(1∕2) =𝐵 ||𝑆,𝜋,𝒙

]
⋅
𝔼
[
𝑓 (𝐵) || 𝑆,𝜋,𝒙

]
2

=
𝔼
[
𝑓 (𝐿(1∕2)) ||𝑆,𝜋,𝒙

]
2

=
𝔼
[
𝑓 (𝐿) || 𝑆,𝜋,𝒙

]
4

,

where the first inequality follows from Lemma 1 since the function ℎ𝐵(𝑇) = ℎ(𝐵 ∪ 𝑇) is non-negative and submodular for all 𝐵 ⊆ ,
and the second inequality follows from Lemma 2. Taking an expectation over all possible realizations of 𝑆 and 𝜋,𝒙, we obtain

𝔼
[
𝑓 (𝑊 (1∕2))

]
= 𝔼

𝑆,𝜋,𝒙

[
𝔼
[
𝑓 (𝑊 (1∕2)) || 𝑆,𝜋,𝒙

]] ≥ 𝔼
𝑆,𝜋,𝒙

[
𝔼
[
𝑓 (𝐿) || 𝑆,𝜋,𝒙

]
4

]

= 𝔼 [𝑓 (𝐿)]
4

.

Finally, by Lemma 6 and Remark 3, we have that for any 𝒛 ∈ 𝑏 ⋅ ′′ and any fixed 𝜀 > 0,

𝔼 [𝑓 (𝐿)]
4

≥ 𝑐
(
𝑒−𝑏 − 𝜀

)
4

⋅ 𝐹 (𝒛),

which implies

𝔼
[
𝑓 (𝑇ALG)

]
= 𝔼

[
𝑓 (𝑊 (1∕2))

] ≥ 𝑐
(
𝑒−𝑏 − 𝜀

)
4

⋅ 𝐹 (𝒛). □

We are now ready to proceed with the main result for general submodular functions, which follows from Lemma 10, Theorem 3,
and Claim 1.

Theorem 9. Let ( , 𝑫, , 𝑓) be an instance of the Submodular Prophet Inequality model and let 𝑂𝑃𝑇 denote the prophet’s value. Given a
(𝑏, 𝑐)-selectable greedy OCRS 𝜋 for  , for a non-negative submodular function 𝑓 , 𝒛∈ 𝑏 ⋅ ′′ and fixed 𝜀 > 0, Algorithm 2 returns a set 𝑇ALG

such that

𝔼
[
𝑓 (𝑇ALG)

] ≥ 𝑐
(
𝑒−𝑏 − 𝜀

)
4

⋅
(
1 − 𝑒−𝑏 − 𝜀

)
⋅𝑂𝑃𝑇 .
15

By combining Lemma 9 with Theorem 9, we obtain the following corollary.

Theoretical Computer Science 1019 (2024) 114814C. Chekuri and V. Livanos

Corollary 2. Let ( , 𝑫, , 𝑓) be an instance of the Submodular Prophet Inequality model and let 𝑂𝑃𝑇 denote the prophet’s value. For a
non-negative submodular function 𝑓 and any fixed 𝜀 > 0, Algorithm 2 returns a set 𝑇ALG such that

𝔼[𝑓 (𝑇ALG)] ≥ (1 − 𝑏)
(
𝑒−𝑏 − 𝜀

)
4

⋅
(
1 − 𝑒−𝑏 − 𝜀

)
⋅𝑂𝑃𝑇 , ∀𝑏 ∈ [0,1],

if  is a matroid constraint

𝔼[𝑓 (𝑇ALG)] ≥ 𝑒−2𝑏
(
𝑒−𝑏 − 𝜀

)
4

⋅
(
1 − 𝑒−𝑏 − 𝜀

)
⋅𝑂𝑃𝑇 , ∀𝑏 ∈ [0,1],

if  is a matching constraint

𝔼[𝑓 (𝑇ALG)] ≥ (1 − 2𝑏)
(
𝑒−𝑏 − 𝜀

)
8 − 8𝑏

⋅
(
1 − 𝑒−𝑏 − 𝜀

)
⋅𝑂𝑃𝑇 , ∀𝑏 ∈

[
0, 1

2

]
,

if  is a knapsack constraint

where  = {𝑇 1, … , 𝑇 𝑛} denotes the set of random sets Algorithm 1 generates.

5. Conclusion

We presented a general framework for submodular prophet inequalities in the model of [31] via greedy Online Contention Resolu-

tion Schemes and correlation gaps. The framework yields substantially improved constant factor competitive ratios for both monotone
and general submodular functions, and can be implemented in polynomial time for many classes of interesting constraints. The frame-

work resolves the open question posed in [28] regarding the model of [31].

Along the way, we strengthened the notion of correlation gap for non-negative submodular functions introduced in [31], and
provided a fine-grained variant of the standard correlation gap. For both cases, our bounds are cleaner and tighter. Moreover, we
presented a refined analysis of the Measured Continuous Greedy algorithm for polytopes with small coordinates and general non-

negative submodular functions, showing that, for these cases, it yields a bound that matches the bound of Continuous Greedy for the
monotone case.

An interesting open question is whether our fine-grained correlation gap for general non-negative submodular functions can be
made tight. It is tempting to conjecture that the lower bound on the gap shown in Theorem 11 is tight for all values of 𝑝. We leave
this as an interesting open problem to resolve.

A natural question for the prophet inequality setting is whether one can obtain better prophet inequalities when the arrival order
of the random variables is chosen uniformly at random or even chosen by the algorithm. In [18], the authors introduce the prophet
secretary model, combining the best of both the secretary and prophet inequality worlds. There has been much work on this model
and we refer to [12,17] for several interesting results in this and related models. We can consider the Submodular Prophet Secretary
(SPS) problem as a generalization of the standard prophet secretary problem. We note that one can obtain improved guarantees in
the SPS problem by using a Random Order CRS instead of an OCRS, since our results utilize the given OCRS in a black-box manner.

In subsequent work, Qiu and Singla [29] obtained improved bounds for SPI via the use of submodular dominance. In particular,
they obtain an optimal 1 −1∕𝑒 bound for uniform matroids in the monotone case. Obtaining optimal SPIs under different constraints
remains an interesting open problem.

CRediT authorship contribution statement

Chandra Chekuri: Investigation, Supervision, Writing – original draft, Writing – review & editing. Vasilis Livanos: Investigation,
Writing – original draft, Writing – review & editing.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing
interests: Chandra Chekuri reports financial support was provided by National Science Foundation grant CCF-1910149.

Acknowledgements

The authors thank Sahil Singla for clarifications on [31], and Jan Vondrák for helpful discussions.

Appendix A. Correlation gap for non-negative submodular functions

In this section we prove Theorems 1 and 3 on the correlation gap for non-negative submodular functions.

The correlation gap for monotone functions [8,33] used a continuous time argument by relating 𝐹 (𝒙) and 𝑓+(𝒙) via another
continuous extension 𝑓 ∗ and this was the same approach followed in [31]. We take a different approach. For the exact correlation
gap in Theorem 1 we build on a proof for the monotone case from [11] which is less well-known; we adapt their proof for the
16

non-negative case via the parameter 𝑝. The proof of Theorem 1 is qualitatively different from that of Theorem 3.

Theoretical Computer Science 1019 (2024) 114814C. Chekuri and V. Livanos

We split the proof into two parts, the upper bound and the lower bound, state them separately and give their proof. Before we
begin, we present two lemmas that are useful in our analysis.

Lemma 11 (Lemma 4.3 from [33]). Let 𝑓 ∶ 2 → ℝ≥0 be a submodular function, let 𝐴1, 𝐴2, … , 𝐴𝑘 ⊆ be 𝑘 (not necessarily disjoint)
sets and let 𝐴1(𝑝1), 𝐴2(𝑝2), … , 𝐴𝑘(𝑝𝑘) their independently sampled subsets, where each element of 𝐴𝑖 appears in 𝐴𝑖(𝑝𝑖) with probability 𝑝𝑖,
for all 1 ≤ 𝑖 ≤ 𝑘. Then

𝔼

[
𝑓

(
𝑘⋃
𝑖=1

𝐴𝑖(𝑝𝑖)

)]
≥ ∑

𝐼⊆[𝑘]

(∏
𝑗∈𝐼

𝑝𝑗

∏
𝑗∉𝐼

(1 − 𝑝𝑗)𝑓

(⋃
𝑗∈𝐼

𝐴𝑗

))
.

Lemma 12. Let 𝑎1 ≥⋯ ≥ 𝑎𝑚 ∈ℝ≥0, and 𝑞1, … , 𝑞𝑚 ∈ [0, 1] such that
∑𝑚

𝑘=1 𝑞𝑘 = 1. Then

𝑚∑
𝑘=1

𝑞𝑘 𝑎𝑘

𝑘−1∏
𝑗=1

(1 − 𝑞𝑗) ≥
(
1 − 1

𝑒

)
⋅

𝑚∑
𝑗=1

𝑞𝑗𝑎𝑗 .

Proof. Since the above inequality is linear in the parameters 𝑎𝑖, it suffices to prove it for the special case 𝑎1 = 𝑎2 =⋯ = 𝑎𝑟 = 1 and
𝑎𝑟+1 = ⋯ = 𝑎𝑚 = 0. (A general decreasing sequence of 𝑎𝑗 can be obtained as a positive linear combination of such special cases).
Hence, it remains to prove

𝑟∑
𝑘=1

𝑞𝑘

𝑘−1∏
𝑗=1

(1 − 𝑞𝑗) ≥
(
1 − 1

𝑒

)
⋅

𝑟∑
𝑗=1

𝑞𝑗 .

We start from the left-hand side, which we expand to
𝑟∑

𝑘=1
𝑞𝑘

𝑘−1∏
𝑗=1

(1 − 𝑞𝑗) = 1 −
𝑟∏

𝑘=1
(1 − 𝑞𝑘) ≥ 1 −

(
1 − 1

𝑟

𝑟∑
𝑘=1

𝑞𝑘

)𝑟

,

where the inequality follows from the arithmetic-geometric mean inequality. Finally, we use the concavity of 𝜙𝑟(𝑥) ∶= 1 −
(
1 − 𝑥

𝑟

)𝑟

,
and the fact that 𝜙𝑟(0) = 0, to get

𝜙𝑟(𝑥) ≥ 𝜙𝑟(1) ⋅ 𝑥 =
(
1 −

(
1 − 1

𝑟

)𝑟
)
⋅ 𝑥

for 𝑥 ∈ [0, 1]. Since
(
1 −

(
1 − 1

𝑟

)𝑟) ≥ (
1 − 1

𝑒

)
for all 𝑟, we get

𝜙𝑟(𝑥) ≥
(
1 − 1

𝑒

)
⋅ 𝑥,

which implies that

𝜙𝑟

(
𝑟∑

𝑘=1
𝑞𝑘

)
= 1 −

(
1 − 1

𝑟

𝑟∑
𝑘=1

𝑞𝑘

)𝑟

≥ (
1 − 1

𝑒

)
⋅

𝑟∑
𝑘=1

𝑞𝑘. □

A.1. Upper bound

The proof of this upper bound is inspired by the proof in [11] for the monotone case, which is different from the earlier one in
[33].

Theorem 10. Let 𝑓 ∶ 2 → ℝ≥0 be a non-negative submodular function, where 𝑛 = | |. Let 𝒙 ∈ [0,1]𝑛, such that 𝒙 ≤ 𝑝 ⋅ 𝟏 for some
𝑝 ∈ [0, 1]. Then,

𝐹 (𝒙) ≥ (1 − 𝑝)
(
1 − 1

𝑒

)
𝑓+(𝒙).

Proof. Consider a basic feasible solution (𝑞𝑗 ,𝐴𝑗)𝑗∈[𝑚] to the linear program that defines 𝑓+(𝒙). In other words, 𝑓+(𝒙) =
∑𝑚

𝑗=1 𝑞𝑗𝑓 (𝐴𝑗),
where

∑𝑚

𝑗=1 𝑞𝑗 = 1,
∑

𝑗∶𝑖∈𝐴𝑗
𝑞𝑗 = 𝑥𝑖, for all 𝑖, and 𝑞𝑗 ≥ 0 for all 𝑗. Notice that, since we chose a basic feasible solution and the LP that

defines 𝑓+(𝒙) has only 𝑛 + 1 constraints, apart from the non-negativity constraints, we have 𝑚 ≤ 𝑛 + 1.

Next, consider the following process to generate a subset of elements. For each 𝑗 ∈ [𝑚] sample independently each element of 𝐴𝑗

with probability 𝑞𝑗 . An element 𝑖 ∈ is not selected with probability equal to
∏

𝑗∶𝑖∈𝐴𝑗
(1 − 𝑞𝑗), thus, 𝑖 is selected with probability

equal to 1 −
∏

𝑗∶𝑖∈𝐴𝑗
(1 − 𝑞𝑗). Notice that we can assume without loss of generality that 𝑞𝑗 ≠ 1 for all 𝑗; if 𝑞𝑗 = 1 for some 𝑗 then that
17

implies that 𝑥𝑖 = 1 for every element 𝑖 ∈𝐴𝑗 , and 𝑞𝑗′ = 0 for all 𝑗′ ≠ 𝑗, which then leads us to 𝐹 (𝒙) = 𝑓 (𝐴𝑗) = 𝑓+(𝒙).

Theoretical Computer Science 1019 (2024) 114814C. Chekuri and V. Livanos

However, we want to make each element 𝑖 to be selected with probability exactly equal to 𝑥𝑖 =
∑

𝑗∶𝑖∈𝐴𝑗
𝑞𝑗 . To do this, we simply

need to sample again each element 𝑖 with probability 𝑟𝑖, where

1 − (1 − 𝑟𝑖) ⋅
∏

𝑗∶𝑖∈𝐴𝑗

(1 − 𝑞𝑗) =
∑

𝑗∶𝑖∈𝐴𝑗

𝑞𝑗 . (5)

It is easy to see that 0 ≤ 𝑟𝑖 ≤ 𝑥𝑖 ≤ 𝑝.

Consider the sampling scheme described above, and let 𝑅 denote a random set created via this sampling scheme. Notice that in
our sampling scheme, each element 𝑖 is chosen independently with probability 𝑥𝑖, which implies that 𝔼𝑅[𝑓 (𝑅)] = 𝐹 (𝒙).

We consider 𝑚 + 𝑛 sets 𝐵1, 𝐵2, … , 𝐵𝑚+𝑛 where 𝐵𝑗 = 𝐴𝑗 for 1 ≤ 𝑗 ≤ 𝑚, and 𝐵𝑚+𝑖 = {𝑖} for 1 ≤ 𝑖 ≤ 𝑛. Let  denote a random
subset of [𝑚 + 𝑛] obtained by including each 𝑗 ∈ {1, 2, … , 𝑚} independently with probability 𝑞𝑗 and each 𝑖 ∈ {𝑚 +1, 𝑚 +2, … , 𝑚 + 𝑛}
independently with probability 𝑟𝑖. Also, let 𝑅′ ⊆ denote a random set where

𝑅′ =
⋃
𝑗∈

𝐵𝑗.

The next claim is based on the submodularity of 𝑓 .

Claim 2.

𝐹 (𝒙) ≥ 𝔼
[
𝑓 (𝑅′)

]
.

Proof. Since 𝐹 (𝒙) = 𝔼𝑅[𝑓 (𝑅)], it suffices to show that

𝔼
𝑅
[𝑓 (𝑅)] ≥ 𝔼

[
𝑓 (𝑅′)

]
.

We apply Lemma 11 for 𝑘 =𝑚 + 𝑛, 𝐴𝑗 =𝐵𝑗 for 1 ≤ 𝑗 ≤𝑚 + 𝑛, 𝑝𝑗 = 𝑞𝑗 for 1 ≤ 𝑗 ≤𝑚, and 𝑝𝑚+𝑖 = 𝑟𝑖 for 1 ≤ 𝑖 ≤ 𝑛. Notice that

𝔼
𝑅
[𝑓 (𝑅)] = 𝔼

[
𝑓

(
𝑘⋃
𝑖=1

𝐵𝑖(𝑝𝑖)

)]
,

while

𝔼
[
𝑓 (𝑅′)

]
=

∑
𝐼⊆[𝑘]

(∏
𝑗∈𝐼

𝑝𝑗

∏
𝑗∉𝐼

(1 − 𝑝𝑗)𝑓

(⋃
𝑗∈𝐼

𝐵𝑗

))
,

and thus, by Lemma 11, we get

𝔼
𝑅
[𝑓 (𝑅)] ≥ 𝔼

[
𝑓 (𝑅′)

]
. □

Claim 3.

𝔼
[
𝑓 (𝑅′)

] ≥ (1 − 𝑝)
(
1 − 1

𝑒

)
⋅ 𝑓+(𝒙).

Proof. Assume, without loss of generality, that 𝑓 (𝐴1) ≥⋯ ≥ 𝑓 (𝐴𝑚). We analyze 𝔼[𝑓 (𝑅′)] by conditioning on the minimum index 𝑗
that belongs to  . For 𝑘 ∈ [𝑚], let

𝐽𝑘 = {𝐼 ⊆ [𝑚+ 𝑛] | 𝑘 ∈ 𝐼 and 𝓁 ∉ 𝐼,∀𝓁 < 𝑘} .

Furthermore, for 𝑘 ∈ [𝑚] define the set function 𝑔𝑘 ∶ 2 →ℝ≥0 where 𝑔𝑘(𝑆) = 𝑓 (𝐵𝑘 ∪ 𝑆) for all 𝑆 ⊆ . It is easy to verify that 𝑔𝑘
is non-negative and submodular because 𝑓 is non-negative and submodular.  ∈ 𝐽𝑘 implies that 𝐵𝑘 ⊆ 𝑅′, hence,

𝔼 [𝑓 (𝑅
′) ∣  ∈ 𝐽𝑘] = 𝔼

[
𝑓 (𝐵𝑘 ∪ (𝑅′ ⧵𝐵𝑘)) ||  ∈ 𝐽𝑘

]
= 𝔼 [𝑔𝑘(𝑅

′ ⧵𝐵𝑘) ∣  ∈ 𝐽𝑘].

For any fixed 𝑖 ∈ we analyze the probability that 𝑖 ∈𝑅′ ⧵𝐵𝑘 conditioned on  ∈ 𝐽𝑘. Using independence of the choice of each
index in  we obtain the following.

Pr [𝑖 ∈ (𝑅′ ⧵𝐵𝑘) ∣  ∈ 𝐽𝑘] = 1 − (1 − 𝑟𝑖)
∏

𝑗∶𝑖∈𝐴𝑗 ,𝑘<𝑗≤𝑚
(1 − 𝑞𝑗)

≤ 1 − (1 − 𝑟)
∏

(1 − 𝑞)
18

𝑖

𝑗∶𝑖∈𝐴𝑗 ,𝑗∈[𝑚]
𝑗

Theoretical Computer Science 1019 (2024) 114814C. Chekuri and V. Livanos

= 𝑥𝑖 ≤ 𝑝.

Thus, applying Lemma 1 to 𝑔𝑘 yields

𝔼 [𝑔𝑘(𝑅
′ ⧵𝐵𝑘) ∣  ∈ 𝐽𝑘] ≥ (1 − 𝑝)𝑔𝑘(∅) = (1 − 𝑝)𝑓 (𝐵𝑘).

Combining the above,

𝔼
[
𝑓 (𝑅′) ||  ∈ 𝐽𝑘

] ≥ (1 − 𝑝) ⋅ 𝑓 (𝐵𝑘). (6)

Also notice that

Pr [ ∈ 𝐽𝑘] = Pr [𝑘 ∈ ] ⋅
𝑘−1∏
𝑗=1

(
1 − Pr [𝑗 ∈ ]

)
= 𝑞𝑘 ⋅

𝑘−1∏
𝑗=1

(1 − 𝑞𝑗). (7)

Therefore,

𝔼
[
𝑓 (𝑅′)

]
=

𝑚∑
𝑘=1

Pr [ ∈ 𝐽𝑘] ⋅ 𝔼
[
𝑓 (𝑅′) ||  ∈ 𝐽𝑘

]
+ Pr

[ ∩ [𝑚] = ∅
]
⋅ 𝔼

[
𝑓 (𝑅′) ||  ∩ [𝑚] = ∅

]
≥

𝑚∑
𝑗=1

Pr [ ∈ 𝐽𝑘] ⋅ 𝔼
[
𝑓 (𝑅′) ||  ∈ 𝐽𝑘

]
≥

𝑚∑
𝑘=1

Pr [ ∈ 𝐽𝑘] ⋅ (1 − 𝑝) ⋅ 𝑓 (𝐵𝑘)

= (1 − 𝑝)
𝑚∑

𝑘=1
𝑞𝑘𝑓 (𝐵𝑘)

𝑘−1∏
𝑗=1

(1 − 𝑞𝑗), (8)

where the first inequality follows from the non-negativity of 𝑓 , the second inequality follows from (6) and the last equality from (7).
However, for 1 ≤ 𝑘 ≤𝑚, we have 𝐵𝑘 =𝐴𝑘, and thus

𝔼
[
𝑓 (𝑅′)

] ≥ (1 − 𝑝)
𝑚∑

𝑘=1
𝑞𝑘𝑓 (𝐴𝑘)

𝑘−1∏
𝑗=1

(1 − 𝑞𝑗).

Finally, utilizing Lemma 12 for 𝑎𝑘 = 𝑓 (𝐴𝑘), we get that

𝑚∑
𝑘=1

𝑞𝑘𝑓 (𝐴𝑘)
𝑘−1∏
𝑗=1

(1 − 𝑞𝑗) ≥
(
1 − 1

𝑒

)
⋅

𝑚∑
𝑗=1

𝑞𝑗𝑓 (𝐴𝑗) =
(
1 − 1

𝑒

)
⋅ 𝑓+(𝒙). (9)

Combining (8) and (9),

𝔼
[
𝑓 (𝑅′)

] ≥ (1 − 𝑝)
(
1 − 1

𝑒

)
⋅ 𝑓+(𝒙). □

Finally, combining Claims 2 and 3, we obtain

𝐹 (𝒙) ≥ (1 − 𝑝)
(
1 − 1

𝑒

)
⋅ 𝑓+(𝒙),

which completes the proof. □

A.2. Lower bound

A simple example on 𝑛 = 2 shows that 𝐹 (𝒙) ≤ (1 −𝑝)𝑓+(𝒙); the function is the cut function of a directed graph on two vertices. For
monotone functions, a simple coverage example shows that 𝐹 (𝒙) ≤ (1 − 1∕𝑒)𝑓+(𝒙). We combine and generalize these two examples
to create an instance for non-monotone functions and obtain the following theorem.

Theorem 11. There exists a non-negative submodular function 𝑓 ∶ 2 →ℝ≥0 such that, for any 0 ≤ 𝑝 ≤ 1, there exists an 𝒙∈ [0,1]𝑛 where ‖𝒙‖∞ ≤ 𝑝 and ()

19

𝐹 (𝒙) ≤ 1 − 𝑒−(1−𝑝) 𝑓+(𝒙).

Theoretical Computer Science 1019 (2024) 114814C. Chekuri and V. Livanos

Fig. 1. Graph 𝐺 which yields the desired lower bound.

Proof. Consider the following graph 𝐺 = (𝑉 , 𝐸), where 𝑉 = {𝑢1, … , 𝑢𝑛, 𝑣}, and 𝐸 = {(𝑢𝑖, 𝑣) ∣ 1 ≤ 𝑖 ≤ 𝑛}. Let 𝑥𝑢𝑖 =
1−𝑝
𝑛

for all 𝑖 ∈
{1, … , 𝑛} and 𝑥𝑣 = 𝑝. We define a function 𝑓 ∶ 2𝑉 →ℝ≥0 as follows (Fig. 1)

𝑓 (𝑆) =

{
1 if 𝑣 ∉ 𝑆 and 𝑆 ≠ ∅,
0 otherwise.

It is easy to see that 𝑓 is submodular. Notice that

𝑓+(𝒙) = 1 − 𝑝,

as the coefficients that maximize
∑

𝑆 𝑎𝑆𝑓 (𝑆) subject to the constraints are 𝑎{𝑣} = 𝑝, 𝑎{𝑢𝑖} =
1−𝑝
𝑛

for all 𝑖 ∈ {1, … , 𝑛} and 𝑎𝑆 = 0, for |𝑆| ≠ 1. In other words, 𝑎{𝑢} = 𝑥𝑢 for all 𝑢 ∈ 𝑉 , and 𝑎𝑆 = 0, if |𝑆| ≠ 1.

Next, notice that, if 𝑅(𝒙) ⊆ 𝑉 is a random set, where each element 𝑢 ∈ 𝑉 is sampled with probability 𝑥𝑢, then 𝑓 (𝑅(𝒙)) = 1 if and
only if 𝑣 is not selected in 𝑅(𝒙), but at least one element of 𝑉 ⧵ {𝑣} is selected. Therefore,

𝐹 (𝒙) = 𝔼[𝑓 (𝑅(𝒙))] = (1 − 𝑝) ⋅
(
1 −

(
1 − 1 − 𝑝

𝑛

)𝑛)
,

which implies that

𝐹 (𝒙)
𝑓+(𝒙)

=
(1 − 𝑝) ⋅

(
1 −

(
1 − 1−𝑝

𝑛

)𝑛)
1 − 𝑝

= 1 −
(
1 − 1 − 𝑝

𝑛

)𝑛

.

As 𝑛 →∞, we get

lim
𝑛→∞

1 −
(
1 − 1 − 𝑝

𝑛

)𝑛

= 1 − 𝑒−(1−𝑝).

We conclude that, for any 0 ≤ 𝑝 < 1, when 𝑥𝑖 ≤ 𝑝 for all 𝑖,

𝐹 (𝒙) ≤ (
1 − 𝑒−(1−𝑝)

)
𝑓+(𝒙). □

Appendix B. Reduction to small probabilities

Observation 12 (Observation 5). Let 𝐼 = ( ,  , 𝑫, 𝑿, 𝑓, ) be an instance of the Submodular Prophet Inequality problem. For every fixed
𝜀 > 0, there is a reduction of 𝐼 to another instance 𝐼 ′ = ( ,  ′, 𝑫′, 𝒀 , 𝑔, ) of the SPI problem such that (i) for all 𝑒 ∈ ′, 𝑫′(𝑒) ≤ 𝜀 and
(ii) there exists an 𝛼-competitive algorithm for 𝐼 if and only if there exists an 𝛼-competitive algorithm for 𝐼 ′.

Proof Sketch. Consider the original instance 𝐼 and recall that each 𝑖 is a probability distribution over 𝑖. Our goal is to ensure
that 𝑖(𝑒) ≤ 𝜀 for every 𝑒 ∈𝑖. Suppose there is an element 𝑒 such that 𝑖(𝑒) > 𝜀. We obtain a new instance 𝐼 ′ as follows. We replace
𝑒 ∈𝑖 by ℎ = ⌈1∕𝜀⌉ “copies” 𝑒1, 𝑒2, … , 𝑒ℎ; let 𝑆𝑒 denote this set of copies. Let  ′

𝑖
be the new set of elements. We obtain a probability

distribution ′
𝑖
∶ ′

𝑖
→ [0, 1] as follows. If 𝑒′ ∈𝑖 such that 𝑒′ ≠ 𝑒 then ′

𝑖
(𝑒′) = 𝑖(𝑒′) (nothing changes for 𝑒′). For each copy 𝑒𝑗

of 𝑒 we set ′
𝑖
(𝑒𝑗) =𝑖(𝑒)∕ℎ and by our choice of ℎ we have ′

𝑖
(𝑒𝑗) ≤ 1∕ℎ ≤ 𝜀, for all 𝑒𝑗 ∈ 𝑆𝑒. Thus,

∑ℎ

𝑗=1′
𝑖
(𝑒𝑗) =𝑖(𝑒). Since we

replaced 𝑒 by ℎ copies of it, the ground set  changes to  ′ and we now define a new submodular function 𝑔 ∶ ′ → ℝ+ that is
derived from 𝑓 . The function 𝑔 treats the copies of 𝑒 as a “single” element and hence mimics 𝑓 . More formally, for any 𝐴 ⊆  ′:
𝑔(𝐴) = 𝑓 (𝐴) if 𝐴 ∩ 𝑆𝑒 = ∅, else 𝑔(𝐴) = 𝑓 ((𝐴 ⧵ 𝑆𝑒) ∪ {𝑒}). It is easy to verify that if 𝑓 is non-negative and submodular, then 𝑔 is also
non-negative and submodular, and also inherits monotonicity from 𝑓 . Let 𝐼 ′ be the resulting modified instance. We observe that
in 𝐼 ′, the probability of an element from 𝑆𝑒 being chosen is precisely equal to 𝑖(𝑒) and hence the copies of 𝑒 act as proxies for 𝑒
20

and the submodular function 𝑔 ensures that every copy behaves the same as 𝑒 in 𝑓 . Note that we crucially relied on the power of

Theoretical Computer Science 1019 (2024) 114814C. Chekuri and V. Livanos

submodularity in this reduction. One can apply this reduction repeatedly to reduce all realization probabilities to at most 𝜀. One also
notices that the reduction is computationally efficient as a function of 𝜀. For any fixed 𝜀, the size of 𝐼 ′ is at most 𝑂(1∕𝜀) times the
size of 𝐼 and a value oracle for 𝑓 can be used to efficiently and easily obtain a value oracle for the new submodular function 𝑔. □

References

[1] M. Adamczyk, M. Sviridenko, J. Ward, Submodular stochastic probing on matroids, Math. Oper. Res. 41 (3) (2016) 1022–1038, https://doi .org /10 .1287 /moor .
2015 .0766.

[2] M. Adamczyk, M. Wlodarczyk, Random order contention resolution schemes, in: 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018,
Paris, France, October 7-9, 2018, 2018, pp. 790–801.

[3] S. Agrawal, Y. Ding, A. Saberi, Y. Ye, Price of correlations in stochastic optimization, Oper. Res. 60 (1) (2012) 150–162, http://www .jstor .org /stable /41476345.

[4] S. Alaei, Bayesian combinatorial auctions: expanding single buyer mechanisms to many buyers, SIAM J. Comput. 43 (2) (2014) 930–972, https://doi .org /10 .
1137 /120878422.

[5] S. Assadi, T. Kesselheim, S. Singla, Improved Truthful Mechanisms for Subadditive Combinatorial Auctions: Breaking the Logarithmic Barrier, Association for
Computing Machinery, 2021, pp. 653–661.

[6] N. Buchbinder, M. Feldman, Submodular functions maximization problems, in: T.F. Gonzalez (Ed.), 2nd edn., in: Handbook of Approximation Algorithms and
Metaheuristics: Methologies and Traditional Applications, vol. 1, CRC Press, 2018.

[7] N. Buchbinder, M. Feldman, J.S. Naor, R. Schwartz, Submodular maximization with cardinality constraints, in: Proceedings of the Twenty-Fifth Annual ACM-

SIAM Symposium on Discrete Algorithms, SODA ’14, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2014, pp. 1433–1452, http://

dl .acm .org /citation .cfm ?id =2634074 .2634180.

[8] G. Calinescu, C. Chekuri, M. Pál, J. Vondrák, Maximizing a monotone submodular function subject to a matroid constraint, SIAM J. Comput. 40 (6) (2011)
1740–1766, https://doi .org /10 .1137 /080733991.

[9] S. Chawla, J.D. Hartline, D.L. Malec, B. Sivan, Multi-parameter mechanism design and sequential posted pricing, in: Proceedings of the Forty-Second ACM
Symposium on Theory of Computing, STOC ’10, Association for Computing Machinery, New York, NY, USA, 2010, pp. 311–320.

[10] S. Chawla, B. Sivan, Bayesian algorithmic mechanism design, SIGecom Exch. 13 (1) (Nov 2014) 5–49, https://doi .org /10 .1145 /2692375 .2692378.

[11] C. Chekuri, J. Vondrák, R. Zenklusen, Submodular function maximization via the multilinear relaxation and contention resolution schemes, in: Proceedings of
the Forty-Third Annual ACM Symposium on Theory of Computing, STOC ’11, ACM, New York, NY, USA, 2011, pp. 783–792.

[12] J.R. Correa, P. Foncea, R. Hoeksma, T. Oosterwijk, T. Vredeveld, Recent developments in prophet inequalities, SIGecom Exch. 17 (1) (2018) 61–70, https://

doi .org /10 .1145 /3331033 .3331039.

[13] M. Dinitz, Recent advances on the matroid secretary problem, SIGACT News 44 (2) (jun 2013) 126–142, https://doi .org /10 .1145 /2491533 .2491557.

[14] P. Dütting, M. Feldman, T. Kesselheim, B. Lucier, Prophet inequalities made easy: stochastic optimization by pricing nonstochastic inputs, SIAM J. Comput. 49 (3)
(2020) 540–582, https://doi .org /10 .1137 /20M1323850.

[15] P. Dütting, T. Kesselheim, B. Lucier, An o (log log𝑚) prophet inequality for subadditive combinatorial auctions, SIAM J. Comput., FOCS20–239–FOCS20–275,
https://doi .org /10 .1137 /20M1382799.

[16] E.B. Dynkin, The optimum choice of the instant for stopping a Markov process, Sov. Math. Dokl. 4 (1963) 627–629.

[17] S. Ehsani, M. Hajiaghayi, T. Kesselheim, S. Singla, Prophet secretary for combinatorial auctions and matroids, in: A. Czumaj (Ed.), Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, January 7-10, 2018, pp. 700–714.

[18] H. Esfandiari, M. Hajiaghayi, V. Liaghat, M. Monemizadeh, Prophet secretary, SIAM J. Discrete Math. 31 (3) (2017) 1685–1701, https://doi .org /10 .1137 /
15M1029394.

[19] M. Feldman, J.S. Naor, R. Schwartz, A unified continuous greedy algorithm for submodular maximization, in: Proceedings of the 2011 IEEE 52Nd Annual
Symposium on Foundations of Computer Science, FOCS ’11, IEEE Computer Society, Washington, DC, USA, 2011, pp. 570–579.

[20] M. Feldman, O. Svensson, R. Zenklusen, Online contention resolution schemes with applications to Bayesian selection problems, SIAM J. Comput. 50 (2) (2021)
255–300, https://doi .org /10 .1137 /18M1226130.

[21] A. Gupta, S. Singla, Random-Order Models, Cambridge University Press, 2021, pp. 234–258.

[22] M.T. Hajiaghayi, R. Kleinberg, T. Sandholm, Automated online mechanism design and prophet inequalities, in: Proceedings of the 22nd National Conference on
Artificial Intelligence - Volume 1, AAAI’07, AAAI Press, 2007, pp. 58–65, http://dl .acm .org /citation .cfm ?id =1619645 .1619656.

[23] J.D. Hartline, Bayesian mechanism design, Found. Trends Theor. Comput. Sci. 8 (3) (2013) 143–263, https://doi .org /10 .1561 /0400000045.

[24] T.P. Hill, R.P. Kertz, A survey of prophet inequalities in optimal stopping theory, Contemp. Math. 125 (1992) 191–207.

[25] S. Kalhan, A study on matroid prophet inequalities, Senior thesis, University of Illinois at Urbana-Champaign, May 2016.

[26] R. Kleinberg, S.M. Weinberg, Matroid prophet inequalities and applications to multi-dimensional mechanism design, Games Econ. Behav. 113 (2019) 97–115,
https://doi .org /10 .1016 /j .geb .2014 .11 .002.

[27] U. Krengel, L. Sucheston, Semiamarts and finite values, Bull. Am. Math. Soc. 83 (4) (1977) 745–747, https://projecteuclid .org :443 /euclid .bams /1183538915.

[28] B. Lucier, An economic view of prophet inequalities, SIGecom Exch. 16 (1) (Sep 2017) 24–47, https://doi .org /10 .1145 /3144722 .3144725.

[29] F. Qiu, S. Singla, Submodular dominance and applications, in: A. Chakrabarti, C. Swamy (Eds.), Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2022, September 19-21, 2022, University of Illinois, Urbana-Champaign, USA (Virtual, Conference), in: LIPIcs,
vol. 245, Schloss Dagstuhl - Leibniz-Zentrum Für Informatik, 2022, pp. 44:1–44:21.

[30] A. Rubinstein, Beyond matroids: secretary problem and prophet inequality with general constraints, in: Proceedings of the Forty-Eighth Annual ACM Symposium
on Theory of Computing, STOC ’16, Association for Computing Machinery, New York, NY, USA, 2016, pp. 324–332.

[31] A. Rubinstein, S. Singla, Combinatorial prophet inequalities, in: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM,
2017, pp. 1671–1687, longer ArXiv version is at http://arxiv .org /abs /1611 .00665.

[32] S. Singla, Combinatorial Optimization Under Uncertainty: Probing and Stopping-Time Algorithms, Ph.D. thesis, CMU, 2018, http://reports -archive .adm .cs .cmu .
edu /anon /2018 /CMU -CS -18 -111 .pdf.

[33] J. Vondrák, Submodularity in combinatorial optimization, Ph.D. thesis, Univerzita Karlova, Matematicko-Fyzikálnífakulta, 2007.

[34] Q. Yan, Mechanism design via correlation gap, in: D. Randall (Ed.), Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms,
21

SODA 2011, San Francisco, California, USA, January 23-25, 2011, SIAM, 2011, pp. 710–719.

https://doi.org/10.1287/moor.2015.0766
https://doi.org/10.1287/moor.2015.0766
http://refhub.elsevier.com/S0304-3975(24)00431-6/bibCA297E3CE8E7951E78ED2CC8927D3828s1
http://refhub.elsevier.com/S0304-3975(24)00431-6/bibCA297E3CE8E7951E78ED2CC8927D3828s1
http://www.jstor.org/stable/41476345
https://doi.org/10.1137/120878422
https://doi.org/10.1137/120878422
http://refhub.elsevier.com/S0304-3975(24)00431-6/bib4334C2381DA9D94F97984C52BD33C61Es1
http://refhub.elsevier.com/S0304-3975(24)00431-6/bib4334C2381DA9D94F97984C52BD33C61Es1
http://refhub.elsevier.com/S0304-3975(24)00431-6/bibCF6DCFFA4C57A3507C810122230DAD00s1
http://refhub.elsevier.com/S0304-3975(24)00431-6/bibCF6DCFFA4C57A3507C810122230DAD00s1
http://dl.acm.org/citation.cfm?id=2634074.2634180
http://dl.acm.org/citation.cfm?id=2634074.2634180
https://doi.org/10.1137/080733991
http://refhub.elsevier.com/S0304-3975(24)00431-6/bib1423F32893C87796837F793E441E45FBs1
http://refhub.elsevier.com/S0304-3975(24)00431-6/bib1423F32893C87796837F793E441E45FBs1
https://doi.org/10.1145/2692375.2692378
http://refhub.elsevier.com/S0304-3975(24)00431-6/bib29FA19E764C47FA898F697BF7BB940DBs1
http://refhub.elsevier.com/S0304-3975(24)00431-6/bib29FA19E764C47FA898F697BF7BB940DBs1
https://doi.org/10.1145/3331033.3331039
https://doi.org/10.1145/3331033.3331039
https://doi.org/10.1145/2491533.2491557
https://doi.org/10.1137/20M1323850
https://doi.org/10.1137/20M1382799
http://refhub.elsevier.com/S0304-3975(24)00431-6/bib94577C34BD0FFBB866DC194441DE4AEBs1
http://refhub.elsevier.com/S0304-3975(24)00431-6/bib6D556F2DC23B5BCE6143222C7AE14EF4s1
http://refhub.elsevier.com/S0304-3975(24)00431-6/bib6D556F2DC23B5BCE6143222C7AE14EF4s1
https://doi.org/10.1137/15M1029394
https://doi.org/10.1137/15M1029394
http://refhub.elsevier.com/S0304-3975(24)00431-6/bib09D3B901B15B43DBDD8CF05E050D6569s1
http://refhub.elsevier.com/S0304-3975(24)00431-6/bib09D3B901B15B43DBDD8CF05E050D6569s1
https://doi.org/10.1137/18M1226130
http://refhub.elsevier.com/S0304-3975(24)00431-6/bib62F9373514AB12C654368466FD32A548s1
http://dl.acm.org/citation.cfm?id=1619645.1619656
https://doi.org/10.1561/0400000045
http://refhub.elsevier.com/S0304-3975(24)00431-6/bib0899C8C398833BDEF1877771F1A91BCDs1
http://refhub.elsevier.com/S0304-3975(24)00431-6/bib4465005260C90C3CEEA0F38F1B573629s1
https://doi.org/10.1016/j.geb.2014.11.002
https://projecteuclid.org:443/euclid.bams/1183538915
https://doi.org/10.1145/3144722.3144725
http://refhub.elsevier.com/S0304-3975(24)00431-6/bib6D2BC71DB00602921A53D1B908137BF9s1
http://refhub.elsevier.com/S0304-3975(24)00431-6/bib6D2BC71DB00602921A53D1B908137BF9s1
http://refhub.elsevier.com/S0304-3975(24)00431-6/bib6D2BC71DB00602921A53D1B908137BF9s1
http://refhub.elsevier.com/S0304-3975(24)00431-6/bibEFE96DECEF3F6069F01CBEB1CD6AD05Fs1
http://refhub.elsevier.com/S0304-3975(24)00431-6/bibEFE96DECEF3F6069F01CBEB1CD6AD05Fs1
http://arxiv.org/abs/1611.00665
http://reports-archive.adm.cs.cmu.edu/anon/2018/CMU-CS-18-111.pdf
http://reports-archive.adm.cs.cmu.edu/anon/2018/CMU-CS-18-111.pdf
http://refhub.elsevier.com/S0304-3975(24)00431-6/bibD1A2BF2DEC28D52487B12738A20CC91Es1
http://refhub.elsevier.com/S0304-3975(24)00431-6/bib911F6332E7F90B94B87F15377263995Cs1
http://refhub.elsevier.com/S0304-3975(24)00431-6/bib911F6332E7F90B94B87F15377263995Cs1

	On submodular prophet inequalities and correlation gap
	1 Introduction
	1.1 Our contributions
	1.2 Other related work

	2 Preliminaries
	2.1 Background and definitions
	2.2 Useful lemmas

	3 Submodular prophet inequality problem
	3.1 An upper bound on the prophet’s value:
	3.2 Fractional solution and correlation gap

	4 Rounding the fractional solution
	4.1 Monotone non-negative submodular functions
	4.2 Non-negative submodular functions

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Correlation gap for non-negative submodular functions
	A.1 Upper bound
	A.2 Lower bound

	Appendix B Reduction to small probabilities
	References

