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Abstract8

In the classical prophet inequality setting, a gambler is given n random variables X1, . . . , Xn taken9

from known distributions, observes their realizations in this (potentially adversarial) order, and10

select one of them, immediately after it is being observed, so that its value is as high as possible.11

The classical prophet inequality shows a strategy that guarantees a value at least half of that an12

omniscience prophet that picks the maximum, and this ratio is optimal.13

Here, we generalize the prophet inequality, allowing the gambler some additional information14

about the future that is otherwise privy only to the prophet. Specifically, at any point in the process,15

the gambler is allowed to query an oracle O. The oracle O responds with a single bit answer: YES16

if the current realization is the largest of the remaining realizations, and NO otherwise. We show17

that the oracle model with m oracle calls is equivalent to the Top-1-of-(m + 1) model when the18

objective is maximizing the probability of selecting the maximum. This equivalence fails to hold19

when the objective is maximizing the competitive ratio, but we still show that any algorithm for the20

oracle model implies an equivalent competitive ratio for the Top-1-of-(m + 1) model.21

We completely resolve the oracle model for any m, giving a tight lower and upper bound on the22

best possible competitive ratio. As a consequence, we provide new results as well as improvements23

on known results for the Top-1-of-m model.24
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1 Introduction28

The field of optimal stopping theory concerns optimization settings where one makes decisions29

in a sequential manner, given imperfect information about the future, in a bid to maximize a30

reward or minimize a cost. A canonical setting in this area is the prophet inequality [24, 25].31

In the classical prophet inequality setting, a gambler is presented with rewards X1, . . . , Xn,32

one after the other, drawn independently from known distributions. Upon seeing a reward33

Xi, the gambler must immediately make an irrevocable decision to either accept Xi, in which34

case the process ends, or to reject Xi and continue, losing the option to select Xi in the35

future. The goal of the gambler is to maximize the selected reward comparing against a36

prophet who knows all realizations in advance and selects the maximum realized reward.37

Throughout, we assume, without loss of generality, that X1, . . . , Xn are continuous random38

variables.39

The performance of the gambler can be measured in terms of several objectives. A40

common metric used in the literature is the competitive ratio, which is also known as the41

Ratio of Expectations (RoE) - see Definition 1.1. Another common distinction is between the42

case in which the given distributions are different and the case in which they are identical.43

For the former, Krengel, Sucheston and Garling [24, 25] showed an optimal strategy that44

is 1/2-competitive. In this setting, the optimal competitive ratio can be achieved by simple,45
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single-threshold algorithms [30, 23]. For I.I.D. random variables, Hill and Kertz [21] initially46

gave a (1 − 1/e)-competitive algorithm. This was improved to ≈ 0.738 [1] and later ≈ 0.74547

[10], which is tight, due to a matching upper bound [21, 22].48

Another relevant metric, introduced by Gilbert and Mosteller [19] for I.I.D. random49

variables, is that of maximizing the Probability of selecting the Maximum realization (PbM) -50

see Definition 1.2. For this objective and I.I.D. random variables, Gilbert and Mosteller [19]51

gave an algorithm that achieves a probability of ≈ 0.58, which is the best possible. Later,52

Esfandiari, Hajiaghayi, Lucier and Mitzenmacher [15] studied the same objective for general53

random variables, obtaining a tight probability equal to 1/e when the random variables arrive54

in adversarial order and 0.517 when the random variables arrive in random order. The latter55

case was recently improved to the tight ≈ 0.58 by Nuti [29], showing that the I.I.D. setting56

is not easier than the non-I.I.D. setting with random order. In this paper, we introduce a57

new model as a means to study variations of both the I.I.D. and the general settings, for58

both the RoE and PbM objectives.59

A setting that is very related to ours is the Top-1-of-m model, formally introduced by60

Assaf and Samuel-Cahn [5] for I.I.D. random variables, although it had been studied initially61

by Gilbert and Mosteller [19]. In this setting, the algorithm is allowed to select m ≥ 162

values, but the value it gets judged by is the maximum selected value. Gilbert and Mosteller63

[19] gave numerical approximations of the PbM objective for 2 ≤ m ≤ 10, using a simple,64

single-threshold algorithm. Later, Assaf and Samuel-Cahn [5] studied the RoE objective for65

general distributions and gave a very elegant and simple (1 − 1/m+1)-competitive algorithm.66

The same authors, along with Larry Goldstein, later improved this in [4], bounding the67

competitive ratio of the optimal algorithm by a recursive differential equation. They gave68

numerical approximations for 2 ≤ m ≤ 5, but studying the asymptotic nature of the constants69

for large m turned out to be difficult. Ezra, Feldman, and Nehama [17] later revisited the70

problem and gave a new algorithm for large m that is 1 − O
(
e−m/6

)
-competitive for the same71

problem. This improves the error term from [4] from linear in m to exponential in m. Harb72

[20] recently improved this into a 1 − e
−mW0

( m√
m!

m

)
-competitive algorithm, where W0 is the73

Lambert-W function1, and improved the lower bound for m = 2 separately. However, the74

asymptotic nature of this function is difficult to analyze.75

Model.76

We introduce a new model that generalizes the standard prophet inequality setting, and77

analyze it as a means to obtain new results and improvements in the Top-1-of-m model. Our78

model allows the algorithm some information about the future that is otherwise privy only to79

the prophet. Specifically, at any point in the process, upon seeing a reward Xi, the algorithm80

is allowed to query an oracle O. The oracle O responds with a single bit answer: YES if the81

current realization is the largest of the remaining realizations, i.e Xi ≥ maxn
j=i+1 Xj and NO82

otherwise. In other words, the oracle O informs the algorithm on whether the latter should83

select Xi, or reject it because there is a higher reward coming in the future. Clearly, with no84

queries available, one recovers the classical prophet inequality setting, whereas with n − 185

queries, the strategy of using a query on every Xi, for i = 1, . . . , n − 1, leads to the algorithm86

selecting the highest realization always. Thus, this model interpolates nicely between the87

two extremes of full information and no information about the future.88

1 The Lambert-W function is W0(x) defined as the solution y to the equation yey = x.
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We use Z to denote max {X1, . . . , Xn}. Before we present our results, we define the89

different settings and objectives we consider in this paper.90

▶ Definition 1.1. The competitive ratio or Ratio of Expectations is denoted by RoE. An91

algorithm ALG is α-competitive, for α ∈ [0, 1], if E [ALG] ≥ α ·E [maxi Xi], and α is called92

the competitive ratio.93

▶ Definition 1.2. The Probability of selecting the Maximum realization is denoted by PbM .94

An algorithm ALG achieves a PbM of α if it returns a value v such that Pr[v = Z] ≥ α.95

▶ Definition 1.3. We use the term I.I.D to refer to the setting where X1, . . . , Xn are96

independent and identically distributed random variables. We use Non-I.I.D. to refer to the97

more general setting where X1, . . . , Xn are independent, but not necessarily identical.98

▶ Definition 1.4. We use Prophm to refer to the Top-1-of-m model, in which the algorithm99

is allowed to choose up to m values, and its payoff is the maximum of the chosen values. We100

use Om refers to our oracle model where the algorithm has access to m oracle calls, and can101

only select one value.102

Note that it makes sense to compare the model Prophm+1 to Om since in the former,103

the algorithm can choose m + 1 values, where as the later can ask the oracle m times, and104

then choose an item. To help distinguish between the different settings, we denote each105

model as M(x, y, z), where106

x is either Prophm or Om with m ∈ N,107

y is either I.I.D or Non-I.I.D. and108

z is either PbM or RoE.109

Motivation.110

Our oracle model is loosely motivated by the idea of enhancing algorithms via the use of111

machine-learned predictions, in order to go beyond worst-case analysis [18, 2, 6, 3, 26]. This112

idea of using learning to improve the performance of algorithms has received significant113

attention recently, for example in designing auctions to maximize revenue [8, 27] or in114

matching problems [13, 31]. For more information on this line of work see the survey115

of Mitzenmacher and Vassilvitskii [28]. In real-world applications such as posted-pricing116

mechanisms for auctions, machine-learning models can capture behavioral patterns of buyers117

and accurately predict their future actions. This allows them to provide highly accurate118

predictions on future realizations in repeated prophet inequality settings, which makes119

studying prediction-enhanced models of prophet inequalities significantly important. While120

our model is less realistic since the predictions are always assumed to be correct, our analysis121

provides a theoretical upper bound on the performance of prediction-enhanced algorithms122

and our algorithms can serve as inspiration for settings where the predictions can also be123

inaccurate.124

1.1 Our Contributions125

In this paper, we study the oracle model for independent random variables following identical126

or general distributions with the PbM and RoE objectives and make the following contribu-127

tions:128

We establish an equivalence between the oracle model and the Top-1-of-m model for129

the PbM objective.130

ICALP 2024
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We show that this equivalence fails to hold for the RoE objective and that the best-131

possible competitive ratios in the two settings are quite separated. However, we show132

that guarantees for RoE in the oracle model translate to guarantees in the Top-1-of-m133

model, thus further motivating our study of the oracle model.134

We resolve the oracle model M(Om, Non-I.I.D. , RoE) by presenting an optimal single-135

threshold algorithm. Our algorithm achieves a competitive ratio of 1 − e−ξm for general136

m, where ξm is the unique positive solution2 to the equation 1 − e−ξm = Γ(m+1,ξm)
m!

3. Fur-137

thermore, we prove that this lower bound is optimal by showing a construction that yields138

an equal upper bound. Since we showed that guarantees for M(Om, Non-I.I.D. , RoE)139

also hold for M(Prophm+1, Non-I.I.D. , RoE), our algorithm improves upon the latter140

setting’s current best-known bounds of [20], even though the guarantees are obtained in141

the weaker oracle model.142

We give a single-threshold algorithm for the oracle model and the PbM objective143

M(Om, I.I.D , P bM) that achieves a 1−O
(
m−m/5

)
probability of selecting the maximum,144

as well as providing an upper bound that is asymptotically (almost) tight. To the best145

of our knowledge, this is the first result for the PbM objective and general m in the146

well studied Top-1-of-m model. Our algorithm achieves a probability of ≈ 0.797 even147

with m = 1 calls to the oracle, a significant improvement on the ≈ 0.58 achieved without148

oracle calls [19].149

As discussed earlier, the main motivation behind our oracle model comes from our first150

two results which relate it to the Top-1-of-m model.151

▶ Theorem 1.5. The M(Om, y, P bM) model is equivalent to the M(Prophm+1, y, P bM)152

model, where y = I.I.D or Non-I.I.D. In other words, for every prophet inequality instance,153

the probability achieved by the best-possible algorithm in the M(Om, y, P bM) model is the154

same as the one achieved by the best-possible algorithm in the M(Prophm+1, y, P bM) model.155

Theorem 1.5 is perhaps not that surprising due to the apparent similarity of the two156

models. However, thinking about the Top-1-of-m setting from the viewpoint of oracle calls157

allows for a different perspective that we exploit in our analysis. Perhaps more surprisingly,158

our oracle model and the Top-1-of-m model stop being equivalent when one considers159

the RoE objective; as we show in our second result, the oracle model is strictly weaker.160

▶ Theorem 1.6. There exists a prophet inequality instance and an algorithm A for an161

M(Prophm+1, Non-I.I.D. , RoE) instance for which no algorithm of M(Om, Non-I.I.D. , RoE)162

can achieve the same competitive ratio as that of A.163

However, for every instance of M(Om, y, RoE) where y = I.I.D or Non-I.I.D. ,164

there exists an algorithm A for the same instance of M(Prophm+1, y, RoE) that achieves a165

competitive ratio that is at least as good as that of the optimal algorithm for M(Om, y, RoE).166

After establishing the relationship between our oracle model and the Top-1-of-m model,167

we turn our attention to upper and lower bounds for the oracle model. First, for the168

Non-I.I.D. setting and the RoE objective, we present an extremely simple single-threshold169

algorithm achieving a competitive ratio that approaches 1 exponentially in m. Even though170

our algorithm is for the oracle model, for which weaker guarantees are expected due to171

Theorem 1.6, it improves upon the best-known guarantee for the Top-1-of-m setting, due172

2 In Section 3, we prove that there is indeed a unique positive solution.
3 Γ(n, x) =

∫∞
x

tn−1e−t dt denotes the upper incomplete gamma function
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to [20]. Our algorithm relies on two techniques; sharding and Poissonization, introduced by173

[20] for the analysis of threshold-based algorithms for prophet inequalities. We also appeal174

to stochastic dominance for the analysis. As an added benefit, the algorithm’s analysis is175

very simple to understand.176

▶ Theorem 1.7. For every m ≥ 1, let ξm denote the unique positive solution to 1 − e−ξm =177
Γ(m+1,ξm)

m! , where Γ(n, x) =
∫∞

x
tn−1e−t dt denotes the upper incomplete gamma function. For178

every instance of the oracle model M(Om, Non-I.I.D. , RoE), there exists an algorithm that179

achieves a competitive ratio at least 1 − e−ξm . As m → +∞, this behaves as 1 − e−m/e+o(m).180

In addition, we provide a construction for every m that gives a matching upper bound181

to the competitive ratio, thus completely resolving the problem for the case of general182

distributions and the RoE objective. The construction we have is perhaps of independent183

interest in the design of counterexamples for other settings, as it combines and generalizes184

standard counterexamples of prophet inequalities.185

▶ Theorem 1.8. For every m ≥ 1, let ξm denote the unique positive solution to 1 − e−ξm =186
Γ(m+1,ξm)

m! , where Γ(k, x) =
∫∞

x
tk−1e−t dt denotes the upper incomplete gamma function.187

For every δ > 0, there exists an instance of M(Om, Non-I.I.D. , z), where z = RoE or188

PbM , in which no algorithm can achieve a
(
1 − e−ξm + δ

)
-competitive ratio or select the189

maximum realization with probability
(
1 − e−ξm + δ

)
.190

We call the sequence {ξm}m≥1 the exponent sequence, and analyze its properties and191

asymptotic behaviour to obtain our tight results. The idea behind why this is the right192

answer for the oracle model is the following: Intuitively, an algorithm for the oracle model193

performs poorly when, every time it expends an oracle call and gets a YES answer, the next194

value it sees that is above the queried value is only slightly larger, and thus the oracle call195

was expended without any real gain. The idea behind the worst-case for this setting is to196

have what is essentially a Poisson random variable with rate ξm, providing the algorithm197

with several non-zero values, each roughly the same. By carefully selecting ξm in order198

to equate the probability of having no non-zero values and the probability of having more199

than m non-zero values, we are forcing the algorithm to expend a query for every non-zero200

realization, thus rendering the oracle calls as useless as possible. This is the intuition behind201

the definition of ξm.202

Next, we turn our attention to the I.I.D setting with m oracles calls and the PbM objective.203

We present a simple, single-threshold algorithm that selects the maximum realization with204

probability that approaches 1 in a super-exponential fashion. As a warm-up, we first present205

the analysis for m = 1 before generalizing it to all m.206

▶ Theorem 1.9. For sufficiently large m, n, and an instance of M(Om, I.I.D , P bM), there207

exists an algorithm that selects the maximum realization with probability at least 1−O
(
m−m/5

)
.208

We also present an upper bound on the probability of success that is asymptotically tight,209

up to small multiplicative constants in the exponent. Because of Theorem 1.5, both upper210

and lower bounds on the probability of success carry over in the Top-1-of-m setting as well.211

▶ Theorem 1.10. There exists an instance of M(Om, I.I.D , P bM) for which no algorithm212

can select the maximum realization with probability greater than 1 − O (m−m).213

ICALP 2024
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Below is a table summarizing our results for the oracle model in the different settings.214

Model Lower Bound Upper Bound
Previous Best Current Best Previous Best Current Best

RoE, General Setting 1 − O
(
e−m/6

)
[17] 1 − e−m/e+o(m) − 1 − e−m/e+o(m)

PbM , I.I.D. Setting ≈ 0.58 [19] ≈ 0.797 (m = 1)
1 − O

(
m−m/5

) − 1 − O (m−m)

215

1.2 Additional Related Work216

We have already mentioned the related work on algorithms with predictions, as well as the217

works of Gilbert and Mosteller [19], Esfandiari, Hajiaghayi, Lucier and Mitzenmacher [15] and218

Nuti [29] for the PbM objective. Related work includes the study of order-aware algorithms219

by Ezra, Feldman, Gravin and Tang [16], algorithms with fairness guarantees by Correa,220

Cristi, Dütting and Norouzi-Fard [9] and algorithms with a-priori information of some of the221

values by Correa, Cristi, Epstein and Soto [11]. In addition to these, Esfandiari, Hajiaghayi,222

Lucier and Mitzenmacher [15] study a related but distinct variant to ours. They relax the223

objective to allow the return of one out of the top k realizations, and show exponential upper224

and lower bounds. Their model, however, is incomparable to ours.225

Organization226

In Section 2 we relate our model to Top-1-of-m model of Assaf and Samuel-Cahn [5] and227

prove the reductions. In Section 3 we present our tight algorithm for the Non-I.I.D. setting.228

Section 4 contains our algorithms and upper bounds for the I.I.D setting. Due to space229

constraints, we present some background on concentration inequalities that we use for our230

results in Appendix A and several missing proofs in Appendix B.231

2 Reductions232

To motivate our oracle model, we start by establishing an equivalence between M(Om, y, P bM)233

and M(Prophm+1, y, P bM), for both the y = I.I.D and y = Non-I.I.D. case (Theorem234

1.5). We also show that, perhaps surprisingly, this equivalence does not hold for the RoE ob-235

jective; guarantees for M(Om, y, RoE) translate to guarantees for M(Prophm+1, y, RoE)236

(Theorem 1.6), but not the converse. Later, we will use this result to improve the best-known237

guarantees on M(Prophm+1, y, RoE).238

2.1 The PbM objective239

▶ Theorem 1.5. The M(Om, y, P bM) model is equivalent to the M(Prophm+1, y, P bM)240

model, where y = I.I.D or Non-I.I.D. In other words, for every prophet inequality instance,241

the probability achieved by the best-possible algorithm in the M(Om, y, P bM) model is the242

same as the one achieved by the best-possible algorithm in the M(Prophm+1, y, P bM) model.243

Theorem 1.5 follows from Lemma 2.1 and Lemma 2.2.244

▶ Lemma 2.1. Fix an instance of M(Prophm+1, y, P bM) where y = I.I.D or Non-245

I.I.D. and let α denote the probability of selecting the maximum that an algorithm A246

for M(Om, y, P bM) achieves on this instance. Then, there exists an algorithm B for247

M(Prophm+1, y, P bM) on this instance, with black-box access to A such that the probability248

that B selects the maximum realization is at least α.249
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Proof. Proof in Appendix B.1. ◀250

Next, we show that M(Om, y, P bM) can be reduced to M(Prophm+1, y, P bM).251

▶ Lemma 2.2. Fix an instance of M(Om, y, P bM) where y = I.I.D or Non-I.I.D. and let α252

denote the probability of selecting the maximum that an algorithm B for M(Prophm+1, y, P bM)253

achieves on this instance. Then, there exists an algorithm A for M(Om, y, P bM) on this254

instance, with black-box access to B such that the probability that A selects the maximum255

realization is at least α.256

Proof. Proof in Appendix B.2. ◀257

2.2 The RoE Objective258

Given the apparent similarity of the two models, one may wonder whether the equivalence259

continues to hold even for the RoE objective. As we show in this section, this is not the260

case, but studying the oracle model for the RoE objective is still useful.261

▶ Theorem 1.6. There exists a prophet inequality instance and an algorithm A for an262

M(Prophm+1, Non-I.I.D. , RoE) instance for which no algorithm of M(Om, Non-I.I.D. , RoE)263

can achieve the same competitive ratio as that of A.264

However, for every instance of M(Om, y, RoE) where y = I.I.D or Non-I.I.D. ,265

there exists an algorithm A for the same instance of M(Prophm+1, y, RoE) that achieves a266

competitive ratio that is at least as good as that of the optimal algorithm for M(Om, y, RoE).267

We first present an example that shows the first part of the theorem.268

▶ Example 2.3. For a fixed ε > 0 and m = 1, consider the following instance:269

X1 = 1 w.p. 1, X2 =
{

1 + ε w.p. 1
2 − ε

0 w.p. 1
2 + ε

, X3 =
{

1
ε w.p. ε

0 w.p. 1 − ε
.270

First, observe that271

E[max {X1, X2, X3}] = 1
ε

· ε + (1 + ε) (1 − ε)
(

1
2 − ε

)
+ 1 · (1 − ε)

(
1
2 + ε

)
.272

Notice that, for small ε, an algorithm B that is optimal for the Proph2 model in this instance273

is to select X1, ignore X2 and then select X3 if it is non-zero. This yields274

E[B] = 1 · (1 − ε) + 1
ε

· ε.275

However, the optimal A will query O at X1. With probability (1 − ε) (1/2 + ε), it will stop276

and select X1, getting a value of 1. Otherwise, it will continue, with no oracle calls left. It277

will ignore X2 and select X3. Thus,278

E[A] = 1 ·
(

1
2 + ε

)
(1 − ε) + 1

ε
· ε.279

The competitive ratios of A and B respectively are280

RoEA =
( 1

2 + ε
)

(1 − ε) + 1
ε · ε

1
ε · ε + (1 + ε) (1 − ε)

( 1
2 − ε

)
+ 1 · (1 − ε)

( 1
2 + ε

)281

ICALP 2024
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and282

RoEB =
(1 − ε) + 1

ε · ε
1
ε · ε + (1 + ε) (1 − ε)

( 1
2 − ε

)
+ 1 · (1 − ε)

( 1
2 + ε

) ,283

and thus, as ε → 0, we get284

RoEA →
3/2

2 = 3
4 , and RoEB → 2

2 = 1.285

The above example, appropriately generalized for m > 1 by having random variables286

X1 = 1 w.p. 1, Xi =
{

1 + (i − 1)ε w.p. 1
2 − ε

0 w.p. 1
2 + ε

, for i = 2, . . . , m + 1, and287

Xm+2 =
{

1
ε w.p. ε

0 w.p. 1 − ε
,288

yields the following corollary.289

▶ Corollary 2.4. For every m ≥ 1, there exists an instance such that290

M(Om, Non-I.I.D. , RoE)
M(Prophm+1, Non-I.I.D. , RoE) ≤ 1 − 1

2m+1 .291

The analysis of this example for general m follows immediately from the m = 1 case. We do292

not present it here as, even though this example is very simple, this gap is not the tightest293

one possible. For a tighter gap between the competitive ratio of the two models, see the294

example in the proof of Theorem 1.8.295

Next, we present the proof of the second part of Theorem 1.6, showing that an algorithm296

for M(Prophm+1, y, RoE) that has access to an algorithm for M(Om, y, RoE) can always297

do at least as well. The theorem follows from Lemma 2.5, whose proof is essentially the same298

as the proof of Lemma 2.1.299

▶ Lemma 2.5. Fix an instance of M(Prophm+1, y, P bM) where y = I.I.D or Non-I.I.D. ,300

and let α denote the competitive ratio that an algorithm A for M(Om, y, P bM) achieves on301

this instance. Then, there exists an algorithm B for M(Prophm+1, y, P bM) on this instance,302

with black-box access to A, that achieves competitive ratio at least α.303

Proof. Again, the idea is that B can simulate A’s behaviour by selecting each realization304

that A decides to query. Initially, B starts with an empty set S of selected values. Whenever305

B is presented with a realization Xi, it feeds it to A. If A decides to select Xi or expend a306

query for Xi, regardless of the outcome of the query, B always selects Xi into S, otherwise307

B decides not to select Xi. By induction, S contains exactly all the realizations that were308

queried by A as well as at most one more realization that might have been selected by A if309

it run out of queries. Therefore, |S| ≤ m + 1.310

Now, notice that, for every possible sequence of realizations, whatever value A has selected311

is also in S. Therefore, if VA is the value selected by A and VB is the value selected by B, we312

have E[VB] ≥ E[VA], and thus the competitive ratio of B is at least α. ◀313

3 The Non-I.I.D. Setting314

After describing how the oracle model is related to the Top-1-of-m model, we continue315

by providing algorithms for the oracle model. Using the reduction of Theorem 1.6, any316
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guarantees we provide for the oracle model with the RoE objective can be directly translated317

to guarantees for the Top-1-of-m model, improving upon the previous work on this model318

[5, 4, 17, 20]. We provide a simple, single-threshold algorithm that completely resolves our319

oracle model for the RoE objective and along the way improves upon the current best-known320

competitive ratio in the Top-1-of-m model.321

3.1 The Exponent Sequence322

Before we describe our algorithm, we introduce a sequence that is crucial in the analysis of323

our algorithm as well as the matching upper bound.324

▶ Definition 3.1. For every m ≥ 1, let ξm denote the unique positive solution to the following325

equation:326

1 − e−ξm = Γ(m + 1, ξm)
m! ,327

where Γ(n, x) =
∫∞

x
tn−1e−t dt denotes the upper incomplete gamma function. We call328

{ξm}m≥1 the exponent sequence.329

The exponent sequence is important since, as we show later, the optimal competitive330

ratio of M(Om, Non-I.I.D. , RoE) is exactly 1 − e−ξm . It is also easy to see that it is an331

increasing sequence in m. Next, we present some useful lemmas about the exponent sequence332

and its asymptotic behaviour.333

▶ Lemma 3.2. We have334

lim
m→∞

ξm

m
= 1

e
.335

Proof. Proof in Appendix B.3. ◀336

▶ Lemma 3.3. For all m ≥ 1, (m!)1/m ≤ ξm ≤ ((m + 1)!)1/m+1.337

Proof. Proof in Appendix B.4. ◀338

▶ Lemma 3.4. Let k, m ≥ 0 be integers. Define339

f(k, m) =
k∑

j=1

ξj
m

j! −
m+k∑

j=m+1

ξj
m

j!340

Then f(k, m) ≥ 0 for all k, m.341

Proof. Proof in Appendix B.5. ◀342

3.2 Sharding, Poissonization, and Stochastic Dominance343

For the lower bound, we will use the Poissonization and sharding approach introduced by344

Harb in [20] that is useful in tackling lower bounds for prophet inequalities. In this technique,345

given random variables X1, . . . , Xn with cdfs F1, . . . , Fn, instead of sampling Xi from Fi, we346

instead imagine sampling K shards Y1, . . . , YK independently from the same distribution with347

cdf F
1/K

i and returning max {Y1, . . . , YK}. In this way, the distribution of max {Y1, . . . , YK}348

is Fi. Harb [20] calls this sharding the random variable Xi.349
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We will shard all the random variables {Xi}1≤i≤n into {Yi,j} 1≤i≤n
1≤j≤K

, and let τ be a350

threshold such that
∑n

i=1
∑K

j=1 Pr[Yi,j ≥ τ ] = c for some constant c to be determined. We351

can rewrite this into the following.352

n∑
i=1

K
(

1 − Pr[Xi ≤ τ ]1/K
)

= c (1)353

Taking the limit of Eq. (1) as K → +∞, we get
∑n

i=1 − log Pr[Xi ≤ τ ] = c, or equivalently354

Pr[Z ≤ τ ] = e−c where Z = max {X1, ..., Xn}. Hence, we retrieve maximum-based thresholds.355

Moreover, because Pr[Yi,j ≥ τ ] ≤ 1
K → 0, then we can use a Poissonization argument to356

count the number of shards Yi,j ≥ τ using a Poisson distribution with rate c. For more357

details, see [20].358

Next we discuss stochastic dominance. Given a threshold-based algorithm that uses a359

single threshold τ , how do we lower bound its competitive ratio? One standard idea is to use360

stochastic dominance, that we briefly present here. Recall that, for Z = max {X1, . . . , Xn},361

E[ALG] =
∫ ∞

0
Pr[ALG ≥ x]dx, E[Z] =

∫ ∞

0
Pr[Z ≥ x]dx362

If we can guarantee that there is c1 ∈ [0, 1] such that for all ν ∈ [0, τ ], Pr[ALG ≥ ν] ≥363

c1 Pr[Z ≥ ν], and that there is a c2 ∈ [0, 1] such that for all ν ∈ [τ, +∞], Pr[ALG ≥ ν] ≥364

c2 Pr[Z ≥ ν], then we get the chain of inequalities365

E[ALG] =
∫ τ

0
Pr[ALG ≥ x]dx +

∫ ∞

τ

Pr[ALG ≥ x]dx (2)366

≥ c1

∫ τ

0
Pr[Z ≥ x]dx + c2

∫ ∞

τ

Pr[Z ≥ x]dx (3)367

≥ min(c1, c2)E[Z] (4)368

And hence c = min(c1, c2) would be a lower bound on the competitive ratio of ALG. This369

argument is used in several results on prophet inequalities and is often referred to as majorizing370

ALG with Z.371

3.3 An Optimal Single-Threshold Algorithm372

We are now ready to describe a single-threshold algorithm that achieves the optimal compet-373

itive ratio in our oracle model.374

▶ Theorem 1.7. For every m ≥ 1, let ξm denote the unique positive solution to 1 − e−ξm =375
Γ(m+1,ξm)

m! , where Γ(n, x) =
∫∞

x
tn−1e−t dt denotes the upper incomplete gamma function. For376

every instance of the oracle model M(Om, Non-I.I.D. , RoE), there exists an algorithm that377

achieves a competitive ratio at least 1 − e−ξm . As m → +∞, this behaves as 1 − e−m/e+o(m).378

Proof. Let Z = max {X1, . . . , Xn}. The algorithm ALG follows the sharding and Poissoniz-379

ation paradigm, setting τ to be the e−ξm quantile of the maximum, i.e. Pr[Z ≤ τ ] = e−ξm .380

It then greedily expends its oracle calls for every value above τ . For every oracle call, if381

the answer is YES, it stops and selects the current realization. Otherwise, it updates the382

querying threshold to be the current realization and continues. Finally, when it run out of383

oracle calls, it accepts the first value above the current threshold.384

The analysis proceeds by stochastic dominance. Let β ∈ [0, τ ]. The probability the385

algorithm selects a value above β is equal to the probability it selects some value. Thus,386
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Pr[ALG ≥ β] ≥ Pr[Z ≥ τ ] = 1 − e−ξm ≥
(
1 − e−ξm

)
Pr[Z ≥ β] (5)387

Next, consider β ∈ [τ, +∞). Let Pr[Z ≤ β] = e−q > e−ξm , implying Pr[Z ≥ β] = 1 − e−q.388

We lower bound Pr[ALG ≥ β] via sharding each {Xi}. Consider how many shards have389

values in the range [τ, β]. By Poissonization, the number of shards is a Poisson random390

variable with rate ξm − q. Consider the event of there being at most m shards with values391

in the range [τ, β], and there being at least one shard in [β, +∞); the algorithm must get a392

value at least β in that case. Hence,393

Pr[ALG ≥ β]
Pr[Z ≥ β] ≥

(1 − e−q)
∑m

i=0 e−(ξm−q) (ξm−q)i

i!
1 − e−q

= Γ(m + 1, ξm − q)
m! (6)394

Note that Eq. (6) is minimized for q → 0, and hence395

Pr[ALG ≥ β] ≥ Γ(m + 1, ξm)
m! · Pr[Z ≥ β]. (7)396

Combining Eq. (5) and Eq. (7), the competitive ratio is at least min
{

1 − e−ξm , Γ(m+1,ξm)
m!

}
=397

1 − e−ξm by the definition of ξm. ◀398

3.4 A Tight Upper Bound399

Next, we give an instance such that no algorithm for M(Om, Non-I.I.D. , RoE) can achieve400

a competitive ratio greater than 1 − e−ξm . The same counterexample works also for the401

PbM objective, as can easily be seen from its proof, giving us the same upper bound for402

the M(Om, Non-I.I.D. , P bM) setting. Our construction once again makes use of the403

exponential sequence – see Definition 3.1.404

▶ Theorem 1.8. For every m ≥ 1, let ξm denote the unique positive solution to 1 − e−ξm =405
Γ(m+1,ξm)

m! , where Γ(k, x) =
∫∞

x
tk−1e−t dt denotes the upper incomplete gamma function.406

For every δ > 0, there exists an instance of M(Om, Non-I.I.D. , z), where z = RoE or407

PbM , in which no algorithm can achieve a
(
1 − e−ξm + δ

)
-competitive ratio or select the408

maximum realization with probability
(
1 − e−ξm + δ

)
.409

Proof. Consider the following instance with n + 2 random variables for n large enough. Let410

ε > 0 be a small enough constant and411

X1 = 1 w.p. 1, Xi =
{

1 + ε · (i − 1) w.p. ξm/n

0 w.p. 1 − ξm/n
for i = 2, . . . , n + 1, and412

Xn+2 =
{

1
ε w.p. ε

0 w.p. 1 − ε
.413

First notice that the prophet obtains a value of414

E [max {X1, . . . , Xn+2}] = 1
ε

· ε + (1 − ε)E [max {X1, . . . , Xn+1}] ,415

where, for ε → 0, the maximum of X1, . . . , Xn+1 is always 1. Therefore, as ε → 0, the416

prophet’s expected value is 2.417
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Also notice that, for large n, X2, . . . , Xn+1 resemble a Poisson random variable with rate418

ξm (as can be seen by Lemma A.2). Therefore,419

Pr [exactly k out of X2, . . . , Xn+1 ̸= 0] → e−ξm
(ξm)k

k! , as n → ∞.420

Before we proceed, let421

Q(k + 1, x) = Γ(k + 1, x)
k! = e−x

k∑
j=0

xj

j!422

denote the regularized incomplete gamma function; 1 − Q(k + 1, x) is also known as the tail423

of the Poisson distribution with rate x. Next, consider an algorithm for this setting. There424

are two cases: either the algorithm decides to query O at X1 = 1 or not. The only differences425

are that (i) the former algorithm has m − 1 queries available for X2, . . . , Xn+2, while the426

latter has m and (ii) the former algorithm gets an expected value of 2 when X2, . . . , Xn+1427

are all 0 (1/ε · ε + (1 − ε) · 1 as ε → 0), whereas the latter gets an expected value of 1.428

Given this, we analyze the performance of an algorithm A that has q queries available429

for X2, . . . , Xn+1, as if X1 was not there. Then, we set q to be m − 1 or m and compare430

the performance of both algorithms. A observes X2, . . . , Xn+1 and can decide to skip some431

number, say k, of the non-zero random variables among X2, . . . , Xn+1 that it sees, without432

expending an oracle call (k could be 0). What is the competitive ratio of A? The only way433

for the algorithm to get a competitive ratio that does not approach 1 as ε → 0 is if it expends434

an oracle call at a random variable Xi, and Xi+1, . . . , Xn+1 = 0. Then, its competitive ratio435

is ε · 1/ε + (1 − ε) · 1, as ε → 0; in all other cases it is 1. Thus, if we think of X2, . . . , Xn+1 as436

a Poisson random variable P , the algorithm gets q tries to “guess” the correct number of the437

realization of P , i.e. the number of non-zeroes of X2, . . . , Xn+1, and expend an oracle call at438

the last one.439

Consider another algorithm B that expends a query for the i-th non-zero value of440

X2, . . . , Xn+1 if and only if the i-th term of the Poisson tail, i.e. e−ξm (ξm)i

i! is in the highest441

q terms of the Poisson tail, and if it runs out of oracle calls, it accepts the first non-zero442

realization it sees afterwards. Every algorithm that decides to skip some non-zero values443

of X2, . . . , Xn+1 without expending an oracle call does at most as good as B, since B444

expends the oracle calls at the terms of the Poisson tail that have the highest probability of445

being the correct number of non-zeroes of X2, . . . , Xn+1. Furthermore, since the pdf of the446

Poisson distribution is unimodal, we know that the highest q terms of the Poisson tail occur447

successively. Specifically, let ℓ + 1 to ℓ + q denote the highest q terms of the Poisson tail.448

This implies that A’s performance is maximized if the k terms it decides to skip are all in449

the beginning.450

Next, we analyze the performance of A, given that it skips the first k non-zero realizations451

of X2, . . . , Xn+1 and starts expending the q oracle calls it has on the k+1 non-zero realization452

of X2, . . . , Xn+1. A gets an expected value of 2 as ε → 0 when the number of non-zero values453

of X2, . . . , Xn+1 is between k + 1 and k + q, and an expected value of 1 otherwise, either454

because it saw too many non-zeros in X2, . . . , Xn+1 or too few. If q = m, then the expected455

value of such an algorithm is456

1 · Q(k + 1, ξm) + 2 · (Q(k + m + 1, ξm) − Q(k + 1, ξm)) + 1 · (1 − Q(k + m + 1, ξm))457

=1 + Q(k + m + 1, ξm) − Q(k + 1, ξm),458
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whereas if q = m − 1, i.e. A expended an oracle call at X1, then its expected value is 2 also459

when X2, . . . , Xn+1 = 0, and thus the total expected value of such an algorithm is460

2 · Q(1, ξm) + 1 · (Q(k + 1, ξm) − Q(1, ξm)) + 2 · (Q(k + m, ξm) − Q(k + 1, ξm))461

+ 1 · (1 − Q(k + m, ξm))462

=1 + Q(1, ξm) − Q(k + 1, ξm) + Q(k + m, ξm).463

Thus, the expected value of every algorithm ALG is upper bounded by464

E[ALG] ≤ 1 − Q(k + 1, ξm) + max {Q(k + m + 1, ξm), Q(1, ξm) + Q(k + m, ξm)}465

= 1 + Q(k + m, ξm) − Q(k + 1, ξm) + e−ξm max
{

ξk+m
m

(k + m!) , 1
}

. (8)466

By Lemma 3.3, for k = 0, we have ξm
m

m! ≥ 1, whereas for k > 0, we have ξk+m
m

(k+m)! ≤ 1.467

Assume that k = 0. Then,468

E[ALG] ≤ 1 + Q(m + 1, ξm) − Q(1, ξm) = 1 + Q(m + 1, ξm) − e−ξm .469

Recall, however, that Q(m + 1, ξm) = 1 − e−ξm by the definition of the exponential sequence,470

and thus471

E[ALG] ≤ 2
(
1 − e−ξm

)
.472

Next, assume that k > 0. Then,473

E[ALG] ≤ 1 + Q(k + m, ξm) − Q(k + 1, ξm) + e−ξm474

= 1 + Q(m + 1, ξm) + e−ξm

k+m−1∑
j=m+1

ξj
m

j! − e−ξm

k∑
j=1

ξj
m

j!475

= 2 − e−ξm − e−ξm
ξk+m

m

(k + m)! − e−ξm

 k∑
j=1

ξj
m

j! −
m+k∑

j=m+1

ξj
m

j!

476

≤ 2 − e−ξm

(
1 + ξk+m

m

(k + m)!

)
477

≤ 2 − 2e−ξm478

= 2
(
1 − e−ξm

)
479

where the second equality follows from Q(m+1, ξm) = 1−e−ξm , the second inequality follows480

by Lemma 3.4 and the third inequality follows from Lemma 3.3. Therefore, the competitive481

ratio of every algorithm is482

RoE ≤
2
(
1 − e−ξm

)
2 = 1 − e−ξm .483

◀484

4 The I.I.D. Setting485

Motivated by the early work of [19] for the Top-1-of-m model, in this section we study the486

I.I.D. setting and the PbM objective. As a warm-up, we take a look at the I.I.D setting with487

the PbM objective and the case of m = 1, providing a simple single-threshold algorithm.488
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4.1 A Single-Threshold Algorithm for m = 1489

Our single-threshold algorithm Ap for M(O1, I.I.D , P bM) selects a threshold τ equal to490

the p-th quantile of the given distribution D, for some p ∈ [0, 1]. In other words, τ is set such491

that p = Pr [Xi ≥ τ ]. The first time the algorithm observes a realization above τ , it queries492

the oracle to see whether the realization should be selected or not. If it continues, it simply493

accepts the first value encountered above the observed realization on which it queried O.494

▶ Lemma 4.1. There exists p ∈ [0, 1] such that Ap selects the maximum realization with495

probability at least 0.797 in the M(O1, I.I.D , P bM) model for large n.496

Proof. Let Y be the total number of realizations above τ , and i1 < i2 < · · · < iY be the497

indices of the random variables above τ , i.e. Xit > τ , for t = 1, . . . , Y . Furthermore, let498

rt be the rank of Xit
in X = {Xi1 , . . . , XiY

}, i.e. the number k such that Xit
is the k-th499

largest number in X , and Z be the maximum realization of X1, . . . , Xn.500

Xi1 is the first realization we observe above τ . Notice that if r1 = 1 or r1 = 2 then the501

algorithm always selects the maximum realization Z. In other words, given that Y = 1 or502

Y = 2, the algorithm selects Z with probability 1. Consider the case Y > 2. Again, if r1 ≤ 2,503

the algorithm selects Z with probability 1. Otherwise, if r1 > 2, the algorithm returns Z if504

and only if for all realizations above τ that appear after Xi1 and are also larger than Xi1 ,505

the first to encounter is Z. In other words, for the algorithm to succeed in this case, it must506

be that among the r1 − 1 values of rank smaller than r1, the first one in the arrival order is507

the element of rank 1. Since the random variables are I.I.D , the probability of this event is508

exactly 1/r1−1.509

Let j be the first index such that Xij > Xi1 , and α(Y ) = Pr {A selects Z | Y }. Condi-510

tioned on Y ≥ 3, the probability that the algorithm selects Z is511

α (Y | Y ≥ 3) = Pr[r1 = 1] + Pr[r1 = 2] +
Y∑

t=3
Pr[r1 = t] Pr {rj = 1 | r1 = t}512

= 2
Y

+
Y∑

t=3

Pr [rz = 1 | r1 = t]
Y

513

= 1
Y

(
2 +

Y∑
t=3

Pr [rz = 1 | r1 = t]
)

514

= 1
Y

(
2 +

Y∑
t=3

1
t − 1

)
515

= 1
Y

(
1 +

Y −1∑
t=1

1
t

)
516

= 1
Y

(1 + HY −1) ,517

where Hn denotes the n-th harmonic number. Recall also that α (Y | Y = 1) = α (Y | Y = 2) =518

1.519

Next, we estimate Pr[Y = i], by approximating Y with a Poisson distribution via Lemma520

A.2 (Le Cam’s theorem). Let δi =
∣∣∣(n

i

)
pi(1 − p)n−i − e−np (np)i

i!

∣∣∣. The idea is to set p such521

that np = q, where q ≥ 1 is a fixed constant. We know that Pr[Y = i] =
(

n
i

)
pi(1 − p)n−i,522

and thus, by Lemma A.2, we have523

∞∑
i=0

δi =
∞∑

i=0

∣∣∣∣∣Pr[Y = i] − e−np (np)i

i!

∣∣∣∣∣ =
∞∑

i=0

∣∣∣∣∣Pr[Y = i] − e−q (q)i

i!

∣∣∣∣∣ ≤ 2qp

max {1, q}
≤ 2p = 2q

n
.524
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Overall, the probability that A selects Z is525

α(Y ) =
n∑

i=0
Pr[Y = i] · α (Y | Y = i)526

= Pr[Y = 1] +
n∑

i=2
Pr[Y = i] · α (Y | Y = i)527

≥ np(1 − p)(n−1) +
n∑

i=2

(
e−q qi

i! − δi

)
· α (Y | Y = i),528

where the last inequality follows by the definition of δi. Thus,529

α(Y ) = q(1 − q/n)(n−1) +
n∑

i=2
e−q qi

i! · α (Y | Y = i) −
n∑

i=2
δi · α (Y | Y = i)530

≥ q(1 − q/n)(n−1) +
n∑

i=2
e−q qi

i!
1 + Hi−1

i
−

n∑
i=2

δi531

≥ q(1 − q/n)(n−1) + e−q
n∑

i=2

qi (1 + Hi−1)
i! · i

− 2q

n
. (9)532

It is easy to see that simply setting q = 2, which corresponds to p = 2/n and τ being the533

2/n-th quantile of D, yields α(Y ) > 0.5801 for all n ≥ 20. Thus, our simple single-threshold534

algorithm, augmented with a single oracle call, beats, even for small n, the optimal algorithm535

for the I.I.D prophet inequality which uses different thresholds per distribution and achieves536

a probability of success approximately 0.5801 [19].537

Since the worst-case probability of ≈ 0.5801 by [19] is achieved for n → ∞, one might be538

interested in the asymptotic behaviour of the probability of our algorithm, α(Y ), for large n.539

It is not too difficult to see after some calculations that, as n → ∞, Eq. (9) is maximized for540

q ≈ 2.435, yielding α(Y ) ≈ 0.798.541

◀542

4.2 A Single-Threshold Algorithm for General m543

As we saw in the previous section, even for a simple, single-threshold algorithm, the analysis544

of the winning probability gets tedious very quickly. In this section, we generalize our545

single-threshold algorithm to the case of general m, and use the fact that the maximum of a546

uniformly random permutation of n values changes O (log n) times with high probability to547

obtain a guarantee on the winning probability that is super-exponential with respect to m.548

As before, our algorithm selects a threshold τ such that p = Pr [X ≥ τ ] and every time549

the algorithm observes a realization above τ , it uses an oracle query and asks O if the550

realization should be selected or not. If not, then it updates the threshold to the new higher551

value. If the algorithm runs out of oracle calls, then it selects the first element above the552

current threshold τ that is encounters, if any. In other words, the algorithm uses the oracle553

calls greedily for all realizations above τ .554

▶ Theorem 1.9. For sufficiently large m, n, and an instance of M(Om, I.I.D , P bM), there555

exists an algorithm that selects the maximum realization with probability at least 1−O
(
m−m/5

)
.556

Proof. Proof in Appendix B.6. ◀557
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4.3 An (Almost) Tight Upper Bound558

Now that we have presented a simple, single-threshold algorithm for the M(Om, I.I.D , P bM)559

setting, a reasonable question to ask is how far it is from being optimal. As we show in this560

section, the algorithm is asymptotically almost optimal.561

▶ Theorem 1.10. There exists an instance of M(Om, I.I.D , P bM) for which no algorithm562

can select the maximum realization with probability greater than 1 − O (m−m).563

Proof. Proof in Appendix B.7. ◀564
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A Background on Concentration Inequalities666

We briefly present two lemmas that will be useful in the analysis of our algorithms; the667

standard Chernoff bound for binary random variables and Le Cam’s theorem.668

▶ Lemma A.1 ([14]). Let Y1, . . . , Yn be independent indicator random variables with pi =669

Pr Yi = 1 and Y =
∑

i Yi. Let µ = E[Y ] =
∑

i pi. Then,670

1. For δ ≥ 0,671

Pr [Y ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)(1+δ)

)µ

.672

2. For δ ≥ 0,673

Pr [Y ≤ (1 − δ)µ] ≤
(

e−δ

(1 − δ)(1−δ)

)µ

.674

3. For δ ∈ (0, 1],675

Pr [Y ≥ (1 + δ)µ] ≤ e−µδ2/3.676

4. For δ ∈ (0, 1]677

Pr [Y ≤ (1 − δ)µ] ≤ e−µδ2/2.678

5. For δ > e2,679

Pr [Y ≥ (1 + δ)µ] < e− µδ log δ
2 .680

Le Cam’s theorem is useful in bounding the approximation error of a binomial distribution681

by a Poisson distribution. We will use a slightly tighter version [12].682

▶ Lemma A.2 ([7, 12]). For every n ∈ N, p ∈ (0, 1), we have683

∞∑
i=0

∣∣∣∣(n

i

)
pi(1 − p)n−i − e−np (np)i

i!

∣∣∣∣ ≤ 2np2

max {1, np}
.684

B Proofs685

B.1 Proof of Lemma 2.1686

Proof. Again, the idea is that B can simulate A’s behaviour by selecting each realization687

that A decides to query. Initially, B starts with an empty set S of selected values. Whenever688
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B is presented with a realization Xi, it feeds it to A. If A decides to select Xi or expend a689

query for Xi, regardless of the outcome of the query, B always selects Xi into S, otherwise690

B decides not to select Xi. By induction, S contains exactly all the realizations that were691

queried by A as well as at most one more realization that might have been selected by A if692

it run out of queries. Therefore, |S| ≤ m + 1.693

Now, notice that A succeeds if and only if it selects the maximum, and it only selects694

a realization Xi if (i) it chose to expend a query on Xi, or (ii) when it observed Xi it run695

out of queries. In both cases, by the description of B, we know that Xi ∈ S, and thus the696

probability that B succeeds is at least α. ◀697

B.2 Proof of Lemma 2.2698

Proof. The idea is that A can simulate B’s behaviour using the oracle queries instead of699

storing the values like B does. Initially, B starts with an empty set S of selected values.700

Whenever A is presented with a realization Xi, it feeds it to B. If B selects Xi into S, A701

chooses to expend a query and ask O whether Xi ≥ maxn
j=i+1 Xj . Consider the first i where702

this happens. We distinguish between the two possible answers:703

If O answers YES, then we know that all future realizations are smaller than Xi. However,704

we also know that since the objective is PbM , any optimal algorithm for Prophm+1705

will only select a value Xi if it is larger than any previously observed value (otherwise706

it “wastes” a spot in S for a value that is definitely not the maximum). Therefore, if707

B selects Xi, we know that Xi ≥ maxj<i Xj . In this case, both B and A succeed in708

selecting the maximum realization.709

If O answers NO, then we know that there exists a future realization that is greater than Xi.710

In this case, the instance for B reduces to M(Prophm, y, P bM) on Xi+1, . . . , Xn, whereas711

the instance for A reduces to M(Om−1, y, P bM). Since we know that M(Proph1, y, P bM) =712

M(O0, y, P bM) by definition, we have that by induction, the probability that A succeeds713

is at least α.714

◀715

B.3 Proof of Lemma 3.2716

Proof. The fraction Γ(m+1,x)
m! is also sometimes called the regularized gamma function.717

Taking the series expansion of the regularized gamma function as m → ∞, we obtain718

Γ(m + 1, x)
m! = 1 −

(e · x

m

)m

· e−x

√
2πm

.719

Thus, for large m, ξm tends to720

1 − e−ξm = 1 −
(

e · ξm

m

)m

· e−ξm

√
2πm

⇐⇒721 (
e · ξm

m

)m

=
√

2πm ⇐⇒722

ξm = (2πm)1/2m · m

e
.723

Notice, however, that limm→∞ (2πm)1/2m = 1, and thus,724

lim
m→∞

ξm

m
= 1

e
.725

◀726
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B.4 Proof of Lemma 3.3727

Proof. Define728

h(x) =
m∑

i=0
e−x xi

i! − 1 + e−x = Γ(m + 1, x)
m! − 1 + e−x (10)729

Clearly, ξm is the unique positive root of h by definition. Note that h is continuous,730

h(0) = 1 > 0, and h is strictly decreasing because h′(x) = −e−x − e−xxm

m! < 0. Hence, it731

is sufficient to show that h
(

((m + 1)!)1/m+1
)

< 0 and conclude by the intermediate value732

theorem that ξm ≤ ((m + 1)!)1/m+1. Rewriting h(x),733

h(x) =
m∑

i=0
e−x xi

i! − 1 + e−x = e−x −
∞∑

i=m+1
e−x xi

i! = e−x

(
1 −

∞∑
i=m+1

xi

i!

)
(11)734

In particular, we want to show that for x ≥ ((m + 1)!)1/m+1, we have
∑∞

i=m+1
xi

i! > 1. Note735

that Rm(x) =
∑∞

i=m+1
xi

i! is precisely the tail of the Taylor expansion of ex, Rm(x), and736

thus, by the Taylor remainder theorem, there exists a ζ ∈ (0, x) such that737

Rm(x) = eζxm+1

(m + 1)! ≥ xm+1

(m + 1)!738

Hence for x ≥ ((m + 1)!)1/m+1, we have h(x) < 0.739

To show the lower bound, it suffices to prove740

g(m) =
∞∑

i=m+1

(m!)i/m

i! < 1741

Let ai = (m!)i/m

i! . First, note that that m! ≤ ((m+1)/2)m by the inequality of arithmetic and742

geometric means. Thus,743

ai+1

ai
=

(m!)i+1/m

(i+1)!
(m!)i/m

i!

= (m!)1/m

i + 1 ≤ m + 1
2(i + 1) <

1
2 ,744

for i ≥ m + 1, which implies that ai < am+1
2m+1−i . But,745

am+1 = (m!)m+1/m

(m + 1)! = (m!)1/m

m + 1 ≤ 1
2746

Hence,747

g(m) =
∞∑

i=m+1
ai < am+1

∞∑
i=m+1

1
2m+1−i

≤ 1
2

∞∑
i=0

2−i = 1.748

◀749
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B.5 Proof of Lemma 3.4750

Proof. First, clearly f(0, m) = 0. Next, we will show that f(k + 1, m) ≥ f(k, m) which will751

imply the claim. We have752

f(k + 1, m) − f(k, m) =
k∑

j=1

ξj
m

j! + ξk+1
m

(k + 1)! −
m+k∑

j=m+1

ξj
m

j! − ξm+k+1
m

(m + k + 1)! − f(k, m) (12)753

= ξk+1
m

(k + 1)! − ξm+k+1
m

(m + k + 1)! ≥ 0 ⇐⇒ ξm ≤
(

(m + k + 1)!
(k + 1)!

)1/m

(13)

754

Note that g(k) =
(

(m+k+1)!
(k+1)!

)1/m

is strictly increasing on k. One way to see this for example755

is to observe that756

g(k + 1)
g(k) =

(
(m + k + 2)!(k + 1)!
(m + k + 1)!(k + 2)!

)1/m

=
(

m + k + 2
k + 2

)1/m

> 1757

Hence, to guarantee Eq. (13) for all k, it is sufficient to prove ξm ≤ ((m + 1)!)1/m. This758

follows by Lemma 3.3 since ((m + 1)!)1/m
> ((m + 1)!)1/m+1. ◀759

B.6 Proof of Theorem 1.9760

Proof. Let L = e
√

m. The idea is to set τ so that p = Pr [X ≥ τ ] = L/n. As before, let Y be761

the number of realizations above τ . By Lemma A.1, we have762

Pr[|Y − L| ≥ δL] ≤ 2e−δ2L/3.763

Setting δ = 1 yields that 1 ≤ Y ≤ 2L with probability at least 1 − 2e−L/3 = 1 − 2e−e
√

m/3 ≥764

1 − m−m/4 for all m.765

Next, let X ′
1, . . . , X ′

Y be the subsequence of all realizations larger than τ , according to766

their arrival order, and let Zi = 1 if X ′
i > maxi−1

j=1 X ′
j , in other words if X ′

i is larger than all767

previous realizations, and Zi = 0 otherwise. Observe that Pr [Zi = 1] = 1/i, and that the768

random variables Z1, . . . , Zn are independent. Furthermore, let M =
∑

i Zi be the number769

of times that the maximum realization changes in the sequence X ′
1, . . . , X ′

Y . Observe that770

if M ≤ m + 1, then m oracle queries are sufficient for the algorithm to always select the771

maximum realization. Therefore, our goal is to bound the probability that this event happens.772

Conditioned on 1 ≤ Y ≤ 2L, we have773

E[M ] =
2L∑
i=1

1
i

≤ log (2L) + 1 ≤
√

m + 2.774

For δ = m+2/E[M ] − 1, we have775

Pr[M ≥ m + 2] = Pr [M ≥ (1 + δ)E[M ]] .776

Notice that for m ≥ 98, we have δ ≥ e2, and thus, by Lemma A.1, we obtain777

Pr[M ≥ m + 2] ≤ e−E[M]δ log δ/2 ≤ e− (m−
√

m)(log(m−
√

m)−log(m+2)/2)
2 ≤ m−m/5.778

If we instead use the tight Chernoff bound in Lemma A.1, we can show that Pr[M ≥ m+2] ≤779

m−m/4+ε for all m and ε > 0.780

Putting everything together, for our algorithm to succeed, it suffices to have 1 ≤ Y ≤ 2L781

and M ≤ m + 1, both of which happen together with probability at least 1 − O
(
m−m/5

)
.782

◀783
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B.7 Proof of Theorem 1.10784

Proof. To construct an instance in which no algorithm can achieve a high probability, fix785

m and consider n random variables X1, . . . , Xn drawn I.I.D from the uniform distribution786

on [0, 1], where n is a sufficiently large number. We first divide [0, 1] into k = n/m log m787

intervals B1, . . . , Bk of length m log m/n each, with Bi =
(
(i − 1) · m log m/n, i · m log m/n

]
. For788

each i = 1, . . . , n, let Yi denote the random variable that is equal to 1 if Xi ∈ Bk and 0789

otherwise, where Bk is the last interval. Also, let Y =
∑n

i=1 Yi. Since the Xi’s follow the790

uniform distribution, we have Pr[Yi = 1] = m log m
n for all i, and E[Y ] = m log m.791

Next, consider an algorithm A for M(Om, I.I.D , P bM) on this instance, and assume792

that Y ≥ 1, i.e. there exists at least one realization that falls in the last interval. Consider793

the moment that A observes a realization Xi ∈ Bk that is larger than all previous realizations794

(including previous realizations in Bk). There are two cases:795

If A decides not to expend a query to O for this realization and skip it, there is a chance796

it fails to select the highest realization. This definitely happens if no other realization in797

the future is in Bk, which occurs with probability798

(1 − Xi)n−i ≥
(

1 − m log m

n

)n−i

≥
(

1 − m log m

n

)n

≥ e−m log m−1 = Ω
(

m−m/1−ε

)
799

for sufficiently large n, for any ε > 0.800

If A decides to expend a query to O for this realization, there is a chance it fails to select801

the highest realization by running out of queries, deciding to select the next realization802

in Bk that is higher than all previous ones, and missing out on a higher realization in803

the future. For this to happen, it must be that Y ≥ m + 2. Let δ = 1 − (1+1/m)/log m. By804

Lemma A.1, this happens with probability805

Pr[Y > m + 1] = 1 − Pr[Y ≤ m + 1]806

= 1 − Pr[Y ≤ (1 − δ)E[Y ]]807

≥ 1 − e
− m log m(log m−1−1/m)2

2log m2
808

≥ 1 − m−m/4.809

Given that Y ≥ m + 2, the probability that the first m + 2 realizations arrive in increasing810

order is 1/(m+2)!. Therefore, A misses out on the maximum realization in this case with811

probability at least (for m ≥ 6)812

1 − m−m/4

(m + 2)! ≥ m−m.813

Therefore, A must miss the maximum realization with probability at least Ω (m−m). ◀814
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