
Optimal Stopping and Applications:
Lecture Notes

Vasilis Livanos∗

1 Secretaries and Prophets

Optimal stopping theory concerns problems in which a decision-maker has to make a series of decisions
immediately (upon observing new information) and irrevocably (without the possibility of amending a
decision later on). In its most basic form, the decision-maker (henceforth algorithm) observes a sequence
of values x1, . . . , xn ∈ R, where n is known a priori, that are revealed in some order. Upon observing xi,
the algorithm has to decide immediately and irrevocably whether or not to select xi (gaining its value
and ending the game), or reject it and continue to the next observation. The objective is to maximize the
selected value, and the algorithm is compared to the optimal value it could have selected, i.e. maxi xi.

Within this common structure, there are many variants that one can consider. However, the two main
questions that define all such models are:

1. Who chooses the values?
2. Who chooses the order that they are observed in?

On one extreme, we could consider a setting in which the answer to both questions is “an adversary”.
However, it is not difficult to see that in this fully adversarial setting, no non-trivial guarantee can be
obtained by the algorithm. To motivate what follows, we show this simple fact below.

Fully Adversarial Setting. To show that no non-trivial guarantee is possible, we first need to define what
constitutes an algorithm for such an online selection problem. We think of every (deterministic) algorithm
as a function f : S → {0, 1}, where S =

{
x ∈ Rk

∣∣ k ≤ n
}
. For every vector x = (x1, . . . , xk) ∈ Rk where

k ≤ n, when an algorithm A, defined by a function fA, observes values x1, . . . , xk and decides to stop
and select xk, we let fA(x) = 1. If instead the algorithm decides to reject x1, . . . , xk and continue, we let
f(x) = 0. Notice that fA((x1, . . . , xk)) = 1 implies fA((x1, . . . , xj)) = 0 for all j < k, for deterministic
algorithms. Randomized algorithms are defined as convex combinations of deterministic algorithms.

To show the impossibility result, we fix an arbitrary algorithm A and distinguish between two cases:

– Assume that there exists a vector x with |x| = k < n such that fA(x) = 1. In this case, the adversary
can select xn ≫ max1≤i≤k xi. Since the algorithm obtains value xi, we have xi

xn
→ 0.

– Next, assume that for every vector x with |x| = k < n, we have fA(x) = 0. Thus, the only vectors x
for which fA(x) = 1 have |x| = n, and the algorithm obtains a value that is at most xn. In this case,
the adversary can select a vector x with x1 ≫ max2≤i≤n xi. Thus, again we get xn

x1
→ 0.

Remark 1. The impossibility result shown above holds for deterministic algorithms. However, one can
easily extend it to randomized algorithms, via the following observation: if the randomized algorithm A is
a convex combination of less than n deterministic algorithms, then for every vector of values x, by the
pigeonhole principle, there exists a position k such that Pr[fA (x≤k) = 1] = 0, where x≤k ∈ Rk is the
vector x restricted to its first k values. Similarly, if A is a convex combination of at least n deterministic
algorithms, then for every vector of values x, by the pigeonhole principle, there exists a position k such
that Pr[fA (x≤k) = 1] ≤ 1/n. In both cases, the adversary can select xk ≫ maxi ̸=k xi, and the ratio of
the algorithm’s value to the optimal value again goes to 0 as n goes to infinity.

Given the above impossibility result, it is evident that, if we are to obtain any interesting guarantees, we
have to relax the adversarial assumption on (at least) one of the arrival order and the values. Thus, online
selection settings are split into two main categories by the choice of which assumption is relaxed: secretary

∗ These notes were assembled with a lot of help from Thanos Tolias, Marina Kontalexi and all the good people at
EPFL’s theory group who had the patience to sit through my lectures.

2 V. Livanos

and prophet settings. We make the distinction between the two categories and discuss them separately due
to the fact that the techniques used to show positive guarantees in each setting are inherently different,
although there is sometimes some overlap between them. Having said that, a recent paper by Dughmi [?]
shows that, at least in some settings, the two models are (roughly) equivalent.

The Secretary Problem. A first idea is to relax the assumption that the arrival order of the values is
chosen by an adversary. Instead, we could assume that it is chosen at random from a (known) distribution
on all n! possible permutations. For simplicity, pretty much all models of this setting consider this
distribution to be a uniform distribution. In this setting, we could even consider a stronger benchmark.
Suppose that all xi’s are discrete and we are now satisfied only with the maximum number of the sequence.
In other words, the utility of an algorithm that selects a value xi is 0 if xi ≠ max1≤j≤n xj and xi only if
xi = max1≤j≤n xj . This is sometimes called the secretary objective. This setting where the values are
chosen by an adversary (who potentially has access to our algorithm), they arrive in a uniformly random
order and we are satisfied only with the maximum value in the sequence is called the secretary problem,
and it has studied extensively in literature since its introduction by Dynkin [2] – see also Ferguson’s
historical discussion of the problem [5].

It is easy to see that, for the secretary objective, we cannot guarantee, in general, that we always select
the maximum number; simply notice that with probability 1/n, the largest number is the first number.
Thus, we either have to always select the first number, in which case we lose with probability 1− 1/n, or
we have to ignore the first number, in which case we lose with probability at least 1/n. Because of this,
we focus on maximizing the probability we select the maximum number, where the probability is taken
over the randomness of the arrival order. The next question is what constitutes a good algorithm for this
problem. This question of algorithmic design is resolved by the following two observations:

(I) First, notice that an algorithm A that aims to maximize Pr [A ← max1≤i≤n xi] should never select a
value xj if xj ̸= max1≤i≤j xi, i.e. if xj is not the largest value observed so far. Values that are the
largest at the moment they are observed are called records. Thus, an optimal algorithm will always
select a record.

(II) Second, notice that, by our previous observation, it is advantageous to forego early values and continue
to future values, where the maximum is more likely to be, since the arrival order is chosen uniformly
at random. Thus, an optimal algorithm will reject the first r values for some r and only select a value
from the remaining ones.

By the above observations, an optimal algorithm will choose a position r ∈ [n] = {1, . . . , n}, reject
x1, . . . , xr and will select a record out of the remaining values xr+1, . . . , xn. The first phase of the
algorithm is called the sampling phase and the second phase is called the selection phase. This algorithmic
scheme is formally described in Algorithm 1.

Algorithm 1: Algorithmic Scheme for the Secretary Problem A(n, r)
1 for i← 1 to r do
2 Skip xi

3 end
4 for i← r + 1 to n do
5 if xi > max1≤j≤i−1 xj then
6 Select xi and stop
7 else
8 Skip xi

9 end

10 end

To begin, let’s consider the algorithm that sets r = n/21 and selects the first record out of xn/2+1, . . . , xn.
Interestingly, even this simple algorithm is enough to guarantee a probability of selecting the maximum
value that is a constant, independent of n.

1 We assume without loss of generality that n is even, since we can always add a dummy value xn+1 = −∞.

Optimal Stopping and Applications: Lecture Notes 3

Observation 1. For every n,

Pr

[
A(n, n/2)← max

1≤i≤n
xi

]
≥ 1/4.

Proof. Let i(1) denote the (random) position of the maximum value and i(2) denote the (random) position
of the second highest value. Consider the two events E1 ≜ i(1) /∈ [r] indicating that the maximum value
does not arrive in the sampling phase and E2 ≜ i(2) ∈ [r] indicating that the second highest value arrives
in the sampling phase. Clearly, Pr[E1] = Pr[E2] = 1/2, but notice that E1 and E2 are not independent.
However, they are positively correlated, meaning that Pr [E1 | E2] ≥ Pr[E1] and Pr [E2 | E1] ≥ Pr[E2]. Also
notice that, when both E1 and E2 happen, A(n, n/2) will select xi(1) . Thus,

Pr

[
A(n, n/2)← max

1≤i≤n
xi

]
≥ Pr[E1 ∧ E2] = Pr[E1] · Pr [E2 | E1] ≥ Pr[E1] · Pr[E2] =

1

4
.

As it turns out, we can do better than 1/4, if we optimize r. To see this, we first need to switch to a
continuous time arrival model, which is equivalent to the uniformly random permutation model.

Observation 2. Consider the set [n] and suppose that each element i arrives at a time ti ∈ [0, 1] chosen
uniformly at random and independent from all other tj. Also, let t denote the sequence of the ti’s sorted
in increasing order. Then, for any permutation π of [n], we have

Pr[t = (tπ(1), . . . , tπ(n))] =
1

n!
.

Proof. Let rt(i) = j denote the index of the time tj at position (i.e. rank) i in the sorted sequence t. In
other words, if tj appears first in t, we let rt(1) = j. Since all the ti’s are chosen uniformly at random, we
have

Pr

 ∧
1≤i≤n

rt(i) = π(i)

 =
1

n
· 1

n− 1
· . . . · 1

1
=

1

n!
.

The proof follows immediately from the fact that Pr[t = (tπ(1), . . . , tπ(n))] = Pr
[∧

1≤i≤n rt(i) = π(i)
]
.

Given Observation 2, A(n, r) is equivalent to an algorithm A′(n, r/n) that does not select any elements of
[n] with arrival time in [0, r/n] and selects the first record with arrival time in (r/n, 1].

A natural question is whether there exists an algorithm that achieves a probability higher than 1/4.
Next, we show that the highest probability one can achieve in general is 1/e.

Theorem 1. For every n,

Pr

[
A(n, n/e)← max

1≤i≤n
xi

]
≥ 1

e
.

Furthermore, for every ε > 0, there exists an nε > 0 such that, for every algorithm ALG,

Pr

[
ALG← max

1≤i≤n
xi

]
≤ 1

e
+ ε.

Proof. Let i∗ = argmax1≤i≤n xi denote the index of the maximum value. We condition on the arrival
time ti∗ of xi∗ and, for an arbitrary p ∈ (0, 1), we have

Pr [A′(n, p)← xi∗] =

∫ 1

p

Pr [A′(n, p)← xi∗ | ti∗ = τ] dτ.

Next, given ti∗ , we condition again, this time on the set S<ti∗ of the indices j of values xj that arrived
before xi∗ . Let xi# denote the maximum value in S<ti∗ , i.e. i

= argmaxj∈S<ti∗
xj . Clearly, A′(n, p) will

select xi∗ if and only if xi# is in the sampling phase, i.e. if and only if ti# ≤ p. Given that ti# < ti∗ , this
happens with probability p/ti∗ . Thus,∫ 1

p

Pr [A′(n, p)← xi∗ | ti∗ = τ] dτ =

∫ 1

p

p

τ
dτ = p ln

(
1

p

)
.

4 V. Livanos

The function f(p) = p ln
(

1
p

)
for p ∈ (0, 1] is maximized at p = 1/e, yielding f(1/e) = 1/e. Thus,

Pr [A(n, n/e)← max1≤i≤n xi] ≥ 1
e .

Since every algorithm ALG has to satisfy properties (I) and (II) described above and f(p) ≤ 1/e for
all p ∈ (0, 1], we conclude, using the equivalence shown in Observation 2, that for every ε > 0, there exists
an nε > 0 such that Pr [ALG← max1≤i≤n xi] ≤ 1

e + ε.

The Prophet Inequality. The second idea going beyond the impossibility of the fully adversarial setting
is to relax the assumption that the values are chosen by an adversary. Instead, we could assume that each
value xi is a random variable Xi, drawn independently from the other values, from a (known) distribution
Fi, while the arrival order is still chosen by an adversary who has full knowledge of all realizations a
priori and selects the worst-case order for our algorithm. Now that each value is a random variable, what
should the benchmark be? In the fully adversarial setting, the benchmark was the ratio of the value the
algorithm selected over the maximum value in the sequence. Here, we take a similar approach and look

at the ratio of the corresponding expected values. In other words, our benchmark is E[ALG]

E[maxi Xi]
. This is

called the competitive ratio of algorithm ALG, or sometimes the prophet objective. This setting, where
the arrival order of the values is chosen by an adversary, the values are drawn independently from known
distributions and we want to maximize the competitive ratio is called the prophet inequality. The prophet
inequality has a slightly shorter history than the secretary problem, having been introduced by Krengel,
Sucheston and Garling [8,9], but has experienced an equally extensive study to the secretary problem in
the literature – see the surveys by Correa, Foncea, Hoeksma, Oosterwijk and Vredeveld [1] and Lucier [10]
for early work on the problem.

In their original paper [8], Krengel and Sucheston showed that there exists an algorithm guaranteeing
a competitive ratio of 1/4 for all instances, independent of n. Later, in collaboration with Garling [9],
they presented an improved algorithm which guarantees a competitive ratio of 1/2 for every instance.
However, Krengel, Sucheston and Garling’s proof is not the simplest way to guarantee a 1/2 competitive
ratio. This honour goes to Samuel-Cahn [11], who gave a simple, single-threshold algorithm with the same
competitive ratio: set a threshold T equal to the median value of the distribution of maxi Xi

2, and accept
the first realization above T , if any. Later, Wittmann [12] showed that setting T = E[maxi Xi]/2 also
works as a threshold. This was later independently rediscovered by Kleinberg and Weinberg [6]. Here, we
present both proofs in a unified analysis3.

Algorithm 2: Single-Threshold Algorithm for the Prophet Inequality Problem B(n, F1, . . . , Fn)

1 Set T such that Pr [max1≤i≤n Xi ≥ T] = 1/2 or T = E[max1≤i≤n Xi]/2
2 for i← 1 to n do
3 if Xi ≥ T then
4 Select Xi and stop
5 else
6 Skip Xi

7 end

8 end

Theorem 2. For every n, Algorithm 2 returns a value B(n, F1, . . . , Fn) such that

E[B(n, F1, . . . , Fn)] >
1

2
· E[max

1≤i≤n
Xi],

regardless of the choice of T .

Proof. First, we upper bound E[max1≤i≤n Xi]. Notice that

E[max
1≤i≤n

Xi] ≤ T +

n∑
i=1

E
[
(Xi − T)+

]
,

2 For simplicity, we assume that all distributions are continuous and thus a median T such that Pr[maxi Xi ≥
T] = 1/2 exists.

3 The author of these lecture notes learned of this really cool analysis that unifies both proofs from Sahil Singla.

Optimal Stopping and Applications: Lecture Notes 5

where (Xi−T)+ denotes max {Xi − T, 0}. This actually holds for any T ∈ R≥0, since either max1≤i≤n Xi ≤
T or max1≤i≤n Xi = Xj > T for some j, and Xj is a term that appears in the sum.

Next, we lower bound E[B(n, F1, . . . , Fn)]. For every i ∈ [n+ 1], let Ei ≜
∧

j<i (Xj < T) denote the
event that B observes Xi, and notice that Pr[Ei] is monotonically decreasing in i and that En+1 is equal
to the event that max1≤i≤n Xi < T . We have

E[B(n, F1, . . . , Fn)] = T · Pr
[
max
1≤i≤n

Xi ≥ T

]
+

n∑
i=1

Pr[Ei] · E
[
(Xi − T)+

]
≥ T · Pr

[
max
1≤i≤n

Xi ≥ T

]
+ Pr[En+1] ·

n∑
i=1

E
[
(Xi − T)+

]
= T · Pr

[
max
1≤i≤n

Xi ≥ T

]
+ Pr

[
max
1≤i≤n

Xi < T

]
· E

[
n∑

i=1

(Xi − T)+

]

≥ T · Pr
[
max
1≤i≤n

Xi ≥ T

]
+ Pr

[
max
1≤i≤n

Xi < T

]
· E

[
max
1≤i≤n

(Xi − T)+
]

≥ T · Pr
[
max
1≤i≤n

Xi ≥ T

]
+ Pr

[
max
1≤i≤n

Xi < T

]
·
(
E
[
max
1≤i≤n

Xi

]
− T

)
.

Notice now that, for T such that Pr [max1≤i≤n Xi ≥ T] = 1/2, we have

E[B(n, F1, . . . , Fn)] ≥
1

2
· T +

1

2
·
(
E
[
max
1≤i≤n

Xi

]
− T

)
=

E [max1≤i≤n Xi]

2
.

Similarly, for T = E [max1≤i≤n Xi] /2, we have

E[B(n, F1, . . . , Fn)] ≥ Pr

[
max
1≤i≤n

Xi ≥ T

]
· E [max1≤i≤n Xi]

2

+

(
1− Pr

[
max
1≤i≤n

Xi ≥ T

])
· E [max1≤i≤n Xi]

2

=
E [max1≤i≤n Xi]

2
.

Next, we show that this lower bound of 1/2 on the competitive ratio is tight, as no algorithm can
guarantee a better competitive ratio.

Theorem 3. For every δ > 0, there exists a prophet inequality instance, where n = 2, such that, for every
algorithm ALG

E[ALG] ≤
(
1

2
+ δ

)
· E[max {X1, X2}].

Proof. Consider the following instance:

X1 = 1 w.p. 1, X2 =

{
1/ε w.p. ε

0 otherwise

We have

E[max {X1, X2}] =
1

ε
· ε+ 1 · (1− ε) = 2− ε.

Every algorithm ALG observes X1 = 1 and has to decide whether to select it or reject it, in which case
the largest value ALG can achieve on expectation is E[X2] = 1. Thus, E[ALG] = 1, and we have that

E[ALG] ≤
(
1
2 + δ

)
· E[max {X1, X2}], for δ = 1/(2− ε)− 1/2.

2 Combinatorial Settings

2.1 Combinatorial Feasibility Constraints

Types of Feasibility Constraints.

6 V. Livanos

Matroid Primer.

2.2 The Matroid Secretary Problem

General Matroids.

Graphic Matroid Secretary. Consider the following algorithm for the secretary problem on graphic
matroids, first introduced by Korula and Pal [7].

Algorithm 3: Korula-Pal Algorithm for Graphic Secretary C(G = (V,E)

1 Let π be a uniformly random permutation of V
2 for e = {u, v} ∈ E do
3 Orient e towards the endpoint that appears first in π
4 end
5 for u ∈ V do
6 Run in parallel a single-item secretary algorithm for all e ∈ δ−(u)
7 end

Observation 3. Algorithm 3 returns an acyclic set of edges F .

Theorem 4. Let OPT be a maximum-weight acyclic subgraph of G. Algorithm 3 returns a set of edges F
such that

E[w(F)] ≥ 1

2e
w(OPT).

Proof. Consider two directed graphs: graph G0 is obtained by orienting every edge of G from higher-
numbered to lower-numbered vertex in π, and graph G1 by orienting every edge from lower-numbered to
higher-numbered vertex in π.

Suppose we flip a fair coin X ∈ {0, 1}. For each vertex v ∈ V , let hX(v) be the heaviest edge leaving
vertex v in GX . Let FX = {hX(v) | v ∈ V }. Clearly, we have∑

v∈V

w(h0(v)) + w(h1(v)) ≥
∑
e∈F∗

w(e).

Conditioned on the coin flip X, each secretary algorithm recovers at least 1/e fraction of the weight of
the heaviest edge leaving its vertex. Hence

E[w(F ′) | X = x] =
1

e
w(Fx)

for x = 0, 1. By the above, we have

E[w(F ′)] =
1

e

(
1

2
E[w(F ′) | X = 0] +

1

2
E[w(F ′) | X = 1]

)
≥ 1

2e
w(F ∗).

2.3 Prophet Inequalities for Combinatorial Constraints

Matroid Prophet Inequality.

Matching Prophet Inequality. Consider the following algorithm for the prophet inequality with
matching constraints, first introduced by Ezra, Feldman, Gravin and Gavin Tang [4].

Let G = (V,E) be a graph and assume we have access to the probabilities x ∈ [0, 1]|E| with which
each edge e appears in the optimal (offline) solution. Next, we select a (random) set R of active edges, by
including every edge independently with probability xe.

Optimal Stopping and Applications: Lecture Notes 7

Algorithm 4: A Simple Algorithm for the Matching Prophet Inequality D(G = (V,E)

1 for e = {u, v} ∈ E do
2 Given the arrival order σ≤e of the edges preceding e, calculate

Pr[u, v are unmatched when e arrives]
3 Define

αe ≜
c

Pr[u, v are unmatched when e arrives]

4 if both u, v are unmatched ∧e ∈ R then
5 Select e with probability αe

6 end

7 end

Note that the term Pr[u, v are unmatched at (u, v)] involves both randomness from R and from previous
steps of our algorithm.

It holds that:

Pr[e is matched |e ∈ R] = Pr[u, v are unmatched at (u, v)] · α(u,v) = c.

It remains to show that Algorithm 4 is well-defined, i.e., that αe ≤ 1 for all e ∈ E.

Theorem 5. Let OPT denote the maximum-weight matching in G. Algorithm 4 returns a set F of edges
such that

E[w(F)] ≥ 1

3
E[w(OPT)].

Proof. Let c = 1
3 . We prove by induction on the number of edges that all αe ≤ 1. The base case |E| = 1

is trivial, since Pr[u, v are unmatched at e] = 1 and αe = 1
3 . Let us prove the induction step. We can

assume by the induction hypothesis that αe ≤ 1 for every edge e ∈ E but the last arriving edge (u, v). To
finish the induction step, we need to show that αe ≤ 1. Recall that our algorithm matches each edge e
preceding (u, v) with probability c · xe. Therefore,

Pr[u is matched at (u, v)] =
∑
s ̸=v

c · xus ≤ c and Pr[v is matched at (u, v)] =
∑
s̸=u

c · xsv ≤ c.

Indeed, the events that u is matched to the vertex s for each s ∈ V \{v} are disjoint, Pr[u matched to s] =
c · xus, and

∑
s̸=v xus ≤ 1. Similarly,

∑
s̸=u xsv ≤ 1.

3 Common Variants

3.1 Matroid Secretary Variants

Random Assignment Model.

3.2 Prophet Inequality Variants

Order Variants. Given x ∈ [0, 1]n satisfying
∑

i xi ≤ 1, in this section we give a simple (1 − 1/e)-
selectable RCRS. As a corollary, this gives an alternate proof of the (1 − 1/e)-prophet secretary for a
single item due to Esfandiari et al. [3].

We first notice that the random order can be emulated by assuming each element i selects a random
time ti to arrive uniformly at random in the interval [0, 1].

Theorem 6. An algorithm that selects an active element i arriving at time t ∈ [0, 1] with probability
exp(−t · xi) (and ignores i otherwise) is (1− 1/e)-selectable for a rank 1 matroid; that is, on average, this
algorithm considers (does not ignore) any element i at least (1− 1/e) fraction of the time.

8 V. Livanos

Proof. By reaching time t (element j), let us denote the event that no element is selected before time t
(element j’s arrival). We start by noticing that for any element i ∈ [n],

Pr[i is considered] =

∫ 1

0

Pr[i is considered at time t | reach time t and i arrives at t]·Pr[reach time t | i arrives at t] dt.

This simplifies to

Pr[i is considered] =

∫ 1

0

exp(−t · xi) · Pr[reach time t | i arrives at t] dt.

Now, we can simplify

Pr[reach time t | i arrives at t] =
∏
j ̸=i

(1− Pr[j arrives before t and is active and considered | reach j]) .

This equals ∏
j ̸=i

(
1− xj ·

∫ t

0

exp(−a · xj) da

)
=

∏
j ̸=i

exp(−t · xj).

Thus, combining with the previous equation,

Pr[i is considered] =

∫ 1

0

exp(−t · xi) ·
∏
j ̸=i

exp(−t · xj) dt ≥
∫ 1

0

exp(−t) dt = 1− 1

e
,

where the inequality uses
∑

i xi ≤ 1.

– Prophet Secretary
– Free Order
– IID (do the DP)

E
X1,...,Xn

[ALG(X1, . . . , Xn)] = E
X1

[
max

{
X1, E

X2,...,Xn

[ALG(X2, . . . , Xn)]

}]
.

Information Variants.

– Sample Access
– Limited Distributional Knowledge
– Oracle Access

4 Techniques

4.1 Secretary Techniques

Sampling & Selection

Greedy Improving.

α-Partition Property.

Matroid Decomposition.

4.2 Prophet Inequality Techniques

Balanced Prices.

Optimal Stopping and Applications: Lecture Notes 9

Online Contention Resolution Schemes. (Due to Chawla, Hartline, Malec, and Sivan; Alaei.) Define
pi as the probability that element Xi takes on the highest value. Hence,

∑
i pi = 1. Moreover, suppose ξi

is such that Pr[Xi ≥ ξi] = pi, i.e., the pi-th percentile for Xi. Define

vi(pi) := E[Xi | Xi ≥ ξi]

as the value of Xi conditioned on it lying in the top pi-th percentile. Clearly, E[Xmax] ≤
∑

i vi(pi) · pi.
Here’s a simple algorithm that gets value 1

4

∑
i vi(pi) · pi ≥

1
4E[Xmax]. If we have not chosen an item

among 1, . . . , i− 1, when looking at item i, pass with probability 1
2 without even looking at Xi, else accept

it if Xi ≥ ξi.
Say we ”reach” item i if we’ve not picked an item before i. The expected value of the algorithm is

ALG ≥
n∑

i=1

Pr[reach item i] · 1
2
· Pr[Xi ≥ ξi] · E[Xi | Xi ≥ ξi] =

n∑
i=1

Pr[reach item i] · 1
2
· pi · vi(pi). (1.1)

Since we pick each item with probability 1
2pi, the expected number of items we choose is half. So, by

Markov’s inequality, the probability we pick no item at all is at least half. Hence, the probability we reach
item i is at least one half too, and the above expression is 1

4

∑
i vi(pi) · pi as claimed.

To improve this algorithm, suppose we denote the probability of reaching item i by ri, and suppose we
reject item i outright with probability 1− qi. Then (1.1) really shows that

ALG ≥
n∑

i=1

ri · qi · pi · vi(pi).

Above, we ensured that qi = ri =
1
2 , and hence lost a factor of 1

4 . But if we could ensure that ri · qi = 1
2 ,

we’d get the desired result of 1
2E[Xmax]. For the first item r1 = 1 and hence we can set q1 = 1

2 .
What about future items? Note that since

ri+1 = ri(1− qi · pi), (1.2)

we can just set qi+1 = 1
2ri+1

. A simple induction shows that ri+1 ≥ 1
2—indeed, summing up (1.2) gives

ri+1 = r1 −
1

2

∑
j≤i

pj ,

so that qi+1 ∈ [0, 1] and is well-defined.

The Power of the Adversary.

Greedy Online Contention Resolution Schemes. The following scheme is due to Jan Vondrák.
Let π denote the OCRS we will create. π will draw a random set R where each element ei appears in R
independently with some probability qi. Afterwards, it will set

Fπ,x = {{ei} | ei ∈ R} .

We set qi = 1−e−xi

xi
for all ei ∈ N . Afterwards, π selects the first element ei that is active and that

{ei} ∈ F .
The proof of the next lemma is identical to the proof of Lemma 3.2.

Lemma 1 (Lemma A.3). π is a randomized greedy OCRS.

Next, we quantify the probability that each element is selected by π, given that it is active.

Lemma 2 (Lemma A.4). π selects every element ei ∈ N , given that it is active, with probability at least
1/e.

10 V. Livanos

Proof. We relabel the elements of N so that each ei arrives in the i-th step. Consider an element ei ∈ N .
Given that ei is active, since π is a greedy OCRS, π will select ei if and only if it has not selected
any elements before ei and also {ei} ∈ Fπ,x. Recall that we have {ei} ∈ Fπ,x with probability exactly

qi =
1−e−xi

xi
. Furthermore, for every element ej where j < i, it needs to be the case that we avoid having

both {ej} ∈ Fπ,x and also ej coming up active. This happens with probability 1− xj · 1−e−xj

xj
= e−xj for

every ej where j < i.
Overall, if we denote by ri the probability that ei is selected by π, given that it is active, we have

ri =
1− e−xi

xi
·
∏
j<i

e−xj =
1− e−xi

xi
· e−

∑
j<i xj ≥ exi−1 − e−1

xi
,

where the inequality follows from
∑

i xi ≤ 1. This expression is minimized for xi → 0, and thus we get
ri ≥ 1

e , for all i ∈ N .

From Lemmas A.3 and A.4, it follows that π is a 1/e-selectable (randomized) greedy OCRS for P .

5 Applications

– Auctions
– Stochastic Optimization
• Online Matching (e.g. Tasks to Agents)
• Vehicle Routing and Assignment

– Dynamic Resource Allocation
• Cloud Computing and Resource Allocation
• Network Bandwidth Allocation

– Supply Chain and Inventory Management
• Inventory Restocking
• Order Fulfillment

– Portfolio Selection and Financial Decision Making
– Organ Transplant Allocation
– Exploration vs. Exploitation in Bandit Problems
– Online Job Scheduling with Uncertain Durations

5.1 Single-Item Auction

Second-price auction – maximize Social Welfare.

5.2 (Offline) Combinatorial Auctions.

The Complement-Free Hierarchy. Here it is:

1. Additive/Linear/Modular
2. Gross Substitutes
3. Submodular
4. XOS/Fractionally Subadditive
5. Subadditive
6. General Monotone

Definition 1 (Gross Substitutes (GS)). The original GS definition is based on a price vector and a
demand set.

– A price vector p is a vector containing a price for each item.
– Given a utility function u and a price vector p, a set X is called a demand if it maximizes the net

utility of the agent:
u(X)− p ·X.

Optimal Stopping and Applications: Lecture Notes 11

– The demand set D(u, p) is the set of all demands.

The GS property means that when the price of some items increases, the demand for other items does
not decrease. Formally, for any two price vectors q and p such that q ≥ p, and any X ∈ D(u, p), there is a
Y ∈ D(u, q) such that

Y ⊇ {x ∈ X | px = qx}

(Y contains all items in X whose price remained constant).

Oracle Models Definitions

The Vickrey-Clarke-Groves (VCG) Mechanism. Externalities.
However, it’s NP-Hard. We want polynomial-time approximations.

Results for (Offline) Combinatorial Auctions. If vi’s have polynomial size representations and we
can exactly maximize welfare, we can use the VCG mechanism (in polynomial time) to incentivize truthful
reporting of valuations. If valuations do not have polynomial representations but we can use queries in
order to maximize welfare (which is the case for GS, we note that answering demand queries for GS
valuations can be done in polynomial time), then the implementation is not in dominant strategies, but is
incentive compatible in some weaker sense.

LP for (Offline) Combinatorial Auction with Unit Demand Valuations ≡ Maximum-Weight Matching

max
∑
i∈N

∑
j∈M

vijxij

s.t.
∑
i∈N

xij ≤ 1, ∀j ∈M∑
j∈M

xij ≤ 1, ∀i ∈ N

xij ≥ 0, ∀i ∈ N, j ∈M

– Value Oracle:
• Unit Demand: 1-approximation. BNIC.
• GS: 1-approximation. BNIC.
• Submodular: 1− 1/e-approximation, tight. Not IC.
• XOS: O (1/

√
m)-approximation, tight. Not IC.

• Subadditive: O (1/
√
m)-approximation, tight. Not IC.

– Demand Oracle:
• Unit Demand: 1-approximation. BNIC.
• GS: 1-approximation. BNIC.
• Submodular: δ-approximation for some 1 − 1/e < δ < 0.938. Not IC. One can easily get a
1− 1/e-approximation using a 1− 1/e-selectable (offline) CRS.
• XOS: 1− 1/e-approximation, tight. Not IC.
• Subadditive: 1/2-approximation, tight. Not IC.

Techniques. Configuration LP: One variable per i ∈ N,S ⊆M .

max
∑
i∈N

∑
S⊆M

vi(S)xi,S

s.t.
∑
S⊆M

xi,S ≤ 1, ∀i ∈ N∑
S⊆M :j∈M

xi,S ≤ 1, ∀j ∈M

xi,S ≥ 0, ∀i ∈ N,S ⊆M

Reduction of Submodular Combinatorial Auctions to Submodular Function Maximization:

12 V. Livanos

Let the set of n players be P , the set of m items Q, and for each i ∈ P , let the respective utility
function be wi : 2

Q → R+. We define a new ground set X = P ×Q, with a function f : 2X → R+ defined
as follows: Every set S ⊆ X can be written uniquely as S =

⋃
i∈P ({i} × Si). Then let

f(S) =
∑
i∈P

wi(Si).

Assuming that each wi is a monotone submodular function, it is easy to verify that f is also monotone
submodular. The interpretation of this construction is that we make |P | copies of each item, one for each
player. However, in reality we can only allocate one copy of each item. Therefore, let us define a partition
matroid M = (X, I) as follows:

I = {S ⊆ X | ∀j; |S ∩ (P × {j})| ≤ 1}.
Then the Submodular Combinatorial Auction is equivalent to

max{f(S) : S ∈ I},
which one can solve and get a 1− 1/e-approximation, for example via continuous greedy.

Truthfulness

– The stronger degree is dominant-strategy incentive-compatibility (DSIC). It means that truth-telling is
a weakly-dominant strategy, i.e. you fare best or at least not worse by being truthful, regardless of
what the others do. In a DSIC mechanism, strategic considerations cannot help any agent achieve
better outcomes than the truth; such mechanisms are called strategyproof, truthful, or straightforward.

– A weaker degree is Bayesian-Nash incentive-compatibility (BNIC). It means there is a Bayesian Nash
equilibrium in which all participants reveal their true preferences. In other words, if all other players
act truthfully, then it is best to be truthful.

VCG is the only DSIC optimal mechanism. Results for Truthful (Offline) Combinatorial Auctions.

– Value Oracle:
• GS: 1-approximation. BNIC.
• Submodular: mΩ(1)-approximation, tight. Not IC.
• XOS: mΩ(1)-approximation, tight. Not IC.
• Subadditive: mΩ(1)-approximation, tight. DSIC.

– Demand Oracle:
• GS: 1-approximation. BNIC.
• Submodular: (log logm)

2
-approximation, not tight. DSIC. [AKS’21]

• XOS: (log logm)
2
-approximation, not tight. DSIC. [AKS’21]

• Subadditive: (log logm)
3
-approximation, not tight. DSIC. [AKS’21]

Problems with VCG Here are some:

1. NP-Hard to compute allocation
2. Revenue Guarantees
3. Collusion

Example 1. Consider an auction with two items, s1 and s2. Suppose we have collected two bids (from
different bidders), both (s1, s2, N). If these are the only two bids, one of the bidders will be awarded both
the items and, under the VCG mechanism, will have to pay N .

However, suppose two more bids (by different bidders) come in: (s1, N +1) and (s2, N +1). Then these
bids will win. Moreover, neither winning bidder will have to pay anything! (This is because a winning
bidder’s item would simply be thrown away if that winning bidder were removed.)

This example demonstrates a number of issues:

1. The addition of more bidders can actually decrease the auctioneer’s revenue from an arbitrary amount
to 0.

2. The VCG mechanism is not revenue-equivalent to the sealed-bid first-price mechanism in combinatorial
auctions, even when all bidders’ true valuations are common knowledge4.

4 Unlike in the single-item case.

Optimal Stopping and Applications: Lecture Notes 13

3. Even when the other bidders by themselves would generate non-negative revenue for the auctioneer
under the VCG mechanism, it is possible that two colluding bidders can bid so as to receive all the
items without paying anything.

5.3 Online Combinatorial Auctions.

Suppose now that the agents cannot lie, but their valuations vi are random variables, drawn from known
distributions Fi over valuations. Suppose also that they arrive in an online fashion and when buyer i
arrives, we get to observe all of vi(S) for all sets S, simultaneously. What can we do?

Posted-Price Mechanisms – equivalence with prophet inequalities. Trivial strategyproof-ness.

– GS: 1/2-approximation. BNIC.
– Submodular: 1/2-approximation, not tight. DSIC. [AKS’21]
– XOS: 1/2-approximation, not tight. DSIC. [AKS’21]
– Subadditive: 1/6-approximation, but without pricing, via a fixed-point argument.

5.4 Extensions

Revenue Maximization. What about maximizing revenue? For single-item auctions, use Myerson’s

optimal auction: maximizing virtual welfare ϕi(v) = v− 1−Fi(v)
fi(v)

maximizes revenue. ϕi(v) can be negative,

in which case it’s optimal to not allocate the item!
Subject to selling the item, VCG is revenue-optimal.
What about simple mechanisms?

Combinatorial Auctions with Feasibility Constraints. Matchings, Matroids and even general
feasibility constraints (O

(
log n log2 r

)
for online CAs, due to [RS’17]).

Prior-Free Auctions. Connections with secretary-type problems.

Sample Access.

Communication Complexity.

6 Conclusion and Open Problems

6.1 Further Work

Benchmark Variants – Philosopher’s Problem.
Learning-Augmented Settings – ties with ML.

6.2 Open Problems

Matroid Secretary.

Free Order vs IID.

Prophet Secretary.

1/e-selectable Greedy OCRS for Matroids.

Optimal Submodular CAs.

O(1)-factor Truthful CAs.

14 V. Livanos

Online Subadditive Auctions with Prices.

Correlated Prophet Inequalities & OCRSs.

References

1. Correa, J.R., Foncea, P., Hoeksma, R., Oosterwijk, T., Vredeveld, T.: Recent developments in prophet
inequalities. SIGecom Exch. 17(1), 61–70 (2018). https://doi.org/10.1145/3331033.3331039, https://doi.org/
10.1145/3331033.3331039

2. Dynkin, E.B.: The optimum choice of the instant for stopping a Markov process. Soviet Math. Dokl 4 (1963)
3. Esfandiari, H., Hajiaghayi, M., Liaghat, V., Monemizadeh, M.: Prophet secretary. SIAM Journal on Dis-

crete Mathematics 31(3), 1685–1701 (2017). https://doi.org/10.1137/15M1029394, https://doi.org/10.1137/
15M1029394

4. Ezra, T., Feldman, M., Gravin, N., Tang, Z.G.: Prophet matching with general arrivals. Mathematics of
Operations Research 47(2), 878–898 (2022). https://doi.org/10.1287/moor.2021.1152, https://doi.org/10.1287/
moor.2021.1152

5. Ferguson, T.S.: Who Solved the Secretary Problem? Statistical Science 4(3), 282 – 289 (1989).
https://doi.org/10.1214/ss/1177012493, https://doi.org/10.1214/ss/1177012493

6. Kleinberg, R., Weinberg, S.M.: Matroid prophet inequalities and applications to multi-dimensional mechanism
design. Games Econ. Behav. 113, 97–115 (2019). https://doi.org/10.1016/j.geb.2014.11.002, https://doi.org/
10.1016/j.geb.2014.11.002

7. Korula, N., Pál, M.: Algorithms for secretary problems on graphs and hypergraphs. In: Albers, S., Marchetti-
Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) Automata, Languages and Programming. pp.
508–520. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

8. Krengel, U., Sucheston, L.: Semiamarts and finite values. Bull. Amer. Math. Soc. 83(4), 745–747 (07 1977),
https://projecteuclid.org:443/euclid.bams/1183538915

9. Krengel, U., Sucheston, L.: On semiamarts, amarts, and processes with finite value. Probability on Banach
spaces 4, 197–266 (1978)

10. Lucier, B.: An economic view of prophet inequalities. SIGecom Exch. 16(1), 24–47 (Sep 2017).
https://doi.org/10.1145/3144722.3144725, https://doi.org/10.1145/3144722.3144725

11. Samuel-Cahn, E.: Comparison of threshold stop rules and maximum for independent nonnegative random
variables. The Annals of Probability 12(4), 1213–1216 (1984), http://www.jstor.org/stable/2243359

12. Wittmann, R.: Prophet inequalities for dependent random variables. Stochastics and Stochastic Reports 52(3-4),
283–293 (1995). https://doi.org/10.1080/17442509508833976, https://doi.org/10.1080/17442509508833976

https://doi.org/10.1145/3331033.3331039
https://doi.org/10.1145/3331033.3331039
https://doi.org/10.1145/3331033.3331039
https://doi.org/10.1137/15M1029394
https://doi.org/10.1137/15M1029394
https://doi.org/10.1137/15M1029394
https://doi.org/10.1287/moor.2021.1152
https://doi.org/10.1287/moor.2021.1152
https://doi.org/10.1287/moor.2021.1152
https://doi.org/10.1214/ss/1177012493
https://doi.org/10.1214/ss/1177012493
https://doi.org/10.1016/j.geb.2014.11.002
https://doi.org/10.1016/j.geb.2014.11.002
https://doi.org/10.1016/j.geb.2014.11.002
https://projecteuclid.org:443/euclid.bams/1183538915
https://doi.org/10.1145/3144722.3144725
https://doi.org/10.1145/3144722.3144725
http://www.jstor.org/stable/2243359
https://doi.org/10.1080/17442509508833976
https://doi.org/10.1080/17442509508833976

	Optimal Stopping and Applications: Lecture Notes

